Shortest-path grocery shopping

What’s the shortest path thru the grocery store to get my items?

Justin Pearson
Apr 19, 2020

n1= Clear ["Global %'"]
SetDirectory[NotebookDirectory[]];

Summary

Given an image of the store’s aisles, we mesh it and generate a graph from the mesh. Then we use
various shortest-path algorithms on the graph to find the shortest tour that visits all the items.

We are careful to build a graph whose edge-weights equal the euclidean distance between adjacent

vertices, so that that shortest-path is shortest with respect to actual space, not just “number of hops on
the graph”.

n@i= 1 = I | | | | ~ 5

2 | shoptimization-v5_WEB.nb

4= m = ImageMesh[i]

Out[4]=

Triangularize the mesh. Pick a small “max cell size” to get small triangles.

shoptimization-v5_WEB.nb | 3

ns= Manipulate[
TriangulateMesh[m, MaxCellMeasure » c],
{{c, 100, "Max cell size (px)"}, 10, 500, 1, Appearance - "Open"}

1

o

Max cell size (px) N =

()
o =t alv] ol

Out[5]=

4 | shoptimization-v5_WEB.nb

ner= t = TriangulateMesh[m, MaxCellMeasure - 100]

Out[6]=

Convert the triangularized-mesh to a graph, using the degree-0 elements of the mesh -- the mesh
points -- as vertices. (Degree-1 is the triangle edges, degree-2 is the triangles themselves.)

n7= g = MeshConnectivityGraph[t, 0]

out[7]=

Asslick Ul for showing shortest-paths between any two vertices.

shoptimization-v5_WEB.nb | 5

ne= Manipulate]
GraphPlot]|
HighlightGraph|
g,
PathGraphe
FindShortestPath|[
g
NearestMeshCells[{t, 0}, u[l], 1] // First,
NearestMeshCells[{t, O}, u[2], 1] // First
1,
GraphHighlightStyle - "DehighlightGray"],
EdgeStyle » Thickness[0.005],
ImageSize » 400
1,
{{u, {{100, 100}, {200, 200}}}, Locator}
1

out[g]=

We extend this idea to build a shortest-path thru the store that visits all your items:

6 | shoptimization-v5_WEB.nb

n9r= Show[Firste@Import['"map-1200px.pdf"], ImageSize -» Full]

eet C HQ. roastrkeyje cheeseteravy crear?rnlk greek yogurt
small flour tomllas I e;f

breakfast sausagel

canadian bacon (x3
peanuts
Poppyseed salad dressini pom juice & red wme
Purates booty
frozfater t
paper towel
flzzy water
\]
‘ crackers
out[9]= hot chocolate mix] r S c o6
whole Wi eat our
yeast (active; c — stlck
shredded1eese
pasla bows
parmesean cheese
bread |
pasta sauce dburry, creme edas pTOSC.IﬁO
bagels c@ned salmon cacﬂaurry choco ate eggs fancy chhummus
Sweet sptozs.
red onion’strawberries
fresh rosemary!ionbluebedrange,
Ca-rﬂ(mma'\loggggapples \..
cucumhnr artbag kale exit entrance

- This is a real map of my local Albertsons grocery store.

- The thin pink line is the shortest tour, ignoring occlusions like the (black) aisles.

- The colored paths visit the items in the order of the shortest tour.

- To find the shortest tour thru the items along the triangulated mesh, I first found the shortest pairwise
distance between every pair of items on the triangulated-mesh graph. Then | made a new complete
graph with only 40 vertices -- the items -- whose edge weights were the pairwise distances. Then |
asked MMA to find the shortest tour of those 40 vertices. (It would have been simpler to ask MMA to find
the shortest path on the triangulated-mesh graph from vertex 1 to vertex 40 that visits all 40 vertices,
but | didn’t know how to do that.)

shoptimization-v5_WEB.nb | 7

Build graph of the grocery store

niio- albertsons = Import["albertsons-map/albertsons-map.001.jpeg"]

7Rl SR 4B 1 SE 2H "B ON BB "B BN+ B3 0201
Out[10]=
ni111= im = albertsons // Binarize // ColorNegate //
DeleteSmallComponents[#, 700] & // ColorNegate;
Thumbnail[

im,
700]

out[12]=

8 | shoptimization-v5_WEB.nb

inis= mesh = ImageMesh[im]

Out[13]=

4= tmesh = TriangulateMesh[mesh, MaxCellMeasure - 100];
Show[tmesh, ImageSize -» Full]

Out[15]=

6= meshGraph = MeshConnectivityGraph[tmesh, 0]

Vertex count: 14150
outiel- Graph | iéo Edge count: 40299]

shoptimization-v5_WEB.nb | 9

ni17= GraphPlot [meshGraph, ImageSize » Full]

LI 2,

Byesy
LI

> 08 o
o0 o°,
&
208 8 ws
3 it
s R0e0es
%532
ol
JRRT AR

e

20 g

I
) 953898 04
S Lo

Get the graph vertices.

Notice that the vertices are not integers, but rather of the form {0,3}. Read this as “Point number 3”.
(Because vertices correspond to points on the mesh, not lines or faces, and points are “degree 0”.)

vlist = VertexList[meshGraph];
Lengthevlist
vlist // Short

outf19]= 14 150

outeoyshor= {{@, 1}, {0, 2}, {O, 3}, {0, 4}, {0, 5},
<«<14141>, {0, 14147}, {0, 14148}, {0, 14149}, {0, 14150}}

nei- elist = EdgeList[meshGraph];
Lengtheelist
elist // Short

outzgy/short= {{@, 1} = {0, 13897}, {0, 1} «— {0, 13899},
<<40295>>, {0, 14145} {0, 14146}, {0, 14145} — {0, 14147}}

Here are the euclidean coordinates of each vertex.

4= vcoords = GraphEmbedding[meshGraph];
vcoords // Short

Out[25)//Short

{{1920., 1080.}, {0., 1080.}, <14 147>, {784.269, 266.766})}

10 | shoptimization-v5_WEB.nb

Map vertices to their coordinates.

nize)= v2coord = Association@eMapThread[Rule, {vlist, vcoords}]

(| {0, 1} - {1920., 1080.}, {0, 2} - (0., 1080.},

(0,3} > {0.,0.}, {0, 4) > {1920., 0.}, ,

(0, 14147} - {745.668, 305.828}, {0, 14148} - {770.708, 307.776},
{0, 14149} - (748.463, 280.563}, {0, 14150} - {784.269, 266.766} |)

Out[26]=

large output show less show more show all set size limit...

Build a new graph with the same vertices and edges, but whose edges are weighted by the euclidean
distance between the vertices.
ni27= AbsoluteTiming[
weightedMeshGraph = Graph|[
vlist,
elist,
EdgeWeight » {u_ — v_ » EuclideanDistance[v2coord[u], v2coord[Vv]]},
VertexCoordinates -» vcoords
13
1
oute7= {90.4457, Null}

The weighted graph has edges that are weighted by the euclidean distance between the vertices.
This is important for distance-finding. Here are two adjacent vertices:

nes;= {vl, v2} = Listee Firsteelist
oups- ({0, 1}, {0, 13897})

In the raw mesh graph, they are only a distance “1” apart:
ni2o;= GraphDistance[meshGraph, v1, v2]
oute9l= 1

In the weighted graph, their graph distance is the euclidean distance:
niz0= GraphDistance[weightedMeshGraph, v1, v2]

out30= 16.875

3= v2coord /@ {vl, v2}
ousi- {{1920., 1680.}, {1920., 1063.13}}

ns2i- EuclideanDistance e@ %

out3zl= 16.875

shoptimization-v5_WEB.nb | 11

Shopping trip

n33= header = Import["Grocery list - ditems.csv'"] // First

ouss= {Name, Category, Location in Kitchen, aisle, front/mid/back/backwall/endcap,
left/right, hi/med/lo, Notes, x-coordinate, y-coordinate, 4/18/2020 - need 1it?}

n@4= rows = Import["Grocery list - items.csv"] // Cases[{___, _Integer, _Integer, ___}]

nizsi= humAllItems = Length@rows
Short[rows, 10]

out[3sl= 89

ouyseysho= { {entrance, n/a, n/a, 1, F, , , , 1399, 96, },
{red wine, booze, over-toaster-cupboard, 2, M, R, M, , 1549, 755, vy},
{greek yogurt, dairy, fridge, 4, BW, , , whole milk, large, 1381, 984, y},
{paper towels, paper products, coat closet, 5, B, L, , , 1286, 686, y},
{cadburry chocolate eggs, candy, pantry, 6, F, L, , , 1212, 291, y},
<<80>>, {tomatoes, produce, fridge, produce, , , , , 343, 130, y},
{yellow onion, produce, counter, produce, , , , , 336, 172, y},
{apples, produce, fridge, produce, , , , , 448, 124, vy},
{avocado, produce, counter, produce, , , , , 379, 124, y}}

nis71= entranceCoord =
rows // FirstCase[{"entrance", __ _, x_Integer, y_Integer, ___} = {X, y}1;
exitCoord = rows // FirstCase[{"exit", ___, x_Integer, y_Integer, __ } = {X, Y}1;}

nse)- {iName, iXcoord, iYcoord, iNeedIt} = Table|
Firste@FirstPosition[header, patt, Heads -» False], {patt,
{"Name", "x-coordinate", "y-coordinate", _? (StringContainsQ["need it2?"])}}
13

allItemNames = rows[All, iName];
allItemCoords = Nerows[All, {iXcoord, iYcoord}];
shoppinglList = Pick[allItemNames, rows[All, iNeedIt], "y"];
PrependTo[shoppingList, "entrance"];
AppendTo[shoppingList, "exit"];

ni4s;= item2coord = Association@MapThread[Rule, {allItemNames, allItemCoords}];
ni46:= item2coord["avocado'"]

ouael= {379., 124.}

na71= item2coord ["milk"]

oua7= {1146., 985.}

H

12 | shoptimization-v5_WEB.nb

ni4s:= item2coord["entrance"]

oups- {1399., 96.}

- gItemNames = Graphics@Table[
Text[

S,

item2coord[s],

Background -» If[
MemberQ[shoppingList, s],
Pink,
LightBlue

]
1, {s, allItemNames}];

nis0)= Show[im, gItemNames, ImageSize » Full]

beef short ribsiertkey: cheesesrvy creamenilk greek yogurt

froz shrimp
small ﬂour tortlllas ﬁ
Ih
peanut butter oInve 0|I hmnufn:e" aay manA
almands| ~anadijan bacon (x3)
peanuts froz peas awi
Po seed salad dressin pom U|ce Iezeer redivic
PPy rice |ra(es booty
froz tater tot
mustard paper towels
izzy water I
crackers cream-filled mozzarella
Out[50]= hot chocolate mixi__| u%‘é"at flour cream cneeseg,
coconut milk e(ai? (Baiive)P ice crearnl
L — cheese stick
COIMISIATE shredded cheese]
nacta — hows ricotia cheese!
pasta — egg noodles parmesean cneese
Bread canned tuna i
o cadburry creme eggs o prosciutto
ages canned salmonl Eavsapptivetiacicy ‘-"- fancy cheeseius

A feta cheese
Sweet pota c::st Bares, sushi - CA roll
ellow onion:™~"Cicu

fresh yellow onion. . - wanye

caullfton'avocadoaples

CUCUMsnap peas) exit entrance

nis11= itemCoords = item2coord /@ shoppingList

ous1= { {1399
{1212
{1054
{1011
{915.
{855.
{649
{550.

shoptimization-v5_WEB.nb

., 96.}, {1549., 755.}, {1381., 984.}, {1286., 686.}, {1212., 291.},
.,306.}, {1146., 985.}, {1113., 985.}, {1127., 985.}, {1067., 987.},
., 988.}, {1033., 897.}, {1010., 813.}, {1012., 794.}, {988., 985.},
., 403.}, {1011., 443.}, {1011., 472.}, {1011., 540.}, {901., 702.},

b

)

M)

b

988
726
891
279

.}, {767
.}, {746
.}, {669
.}, {473

., 991.}, {841.
., 776.}, {T4T.
., 527.}, {668.
., 554.}, {394,

, 988
, 580
, 485
, 289

.}, {801
.1, {779
.}, {592
.1, {394

., 986.}, {826.
., 655.}, {780.
., 306.}, {590.
., 335.}, {360.

K

)

b

b

989.1,
746.1,
420.},
743.1,

(1631., 277.}, {1571., 278.}, {1632., 312.}, {388., 91.}, {457., 168.},
(342.,91.}, {287., 137.}, {288., 103.}, {286., 167.}, {368., 178.}, {421., 200.},
(385., 141.}, {502., 173.}, {376., 204.}, {342., 187.}, {354., 175.}, {461., 186.},
(358., 214.}, {343., 130.}, {336., 172.}, {448., 124.}, {379., 124.}, {631., 94.}}

ns2;= itemVertices = First@NearestMeshCells[{tmesh, 0}, #, 1] & /@ itemCoords

ouse- ({0, 4861}, {0, 6989}, {0, 9420}, {0, 8101}, {0, 7142}, {0, 7147}, {0, 8868},
(0, 7834}, {0, 7831}, {0, 6206}, {0, 6200}, {0, 7222}, {0, 10152}, {0, 10140},
{0, 6131}, {0, 7115}, {0, 7134}, {0, 7500}, {0, 9873}, {0, 7742}, {0, 6138},
(0, 6169}, {0, 5996}, {0, 6162}, {0, 6156}, {0, 5874}, {0, 11070}, {0, 14004},
(0, 13980}, {0, 11086}, {0, 6279}, {0, 4890}, {0, 4884}, {0, 7408}, {0, 11568},
(0, 6510}, {0, 5628}, {0, 7047}, {0, 194}, {0, 8043}, {0, 5115}, {0, 5139},
(0, 5118}, {0, 344}, {0, 429}, {0, 364}, {0, 5709}, {0, 5723}, {0, 373},
(0, 184}, {0, 3215}, {0, 304}, {0, 452}, {0, 173}, {0, 204}, {0, 272},
(0, 432}, {0, 205}, {0, 148}, {0, 188}, {0, 418}, {0, 335}, {0, 3747})

Example

Find a path from the first item (“entrance”)to the last item (“exit”):

ns3= p = FindShortestPath[
weightedMeshGraph,

itemVertices[1],

itemVertices[-1]

]

ouss- {{0, 4861}, {0, 4751}, {0, 4758}, {0, 4768}, {0, 4757}, {0, 4399}, {0, 4398}, {0, 3790},
(0, 4731}, {0, 4219}, {0, 4221}, {0, 4226}, {0, 4191}, {0, 4204}, {0, 4203}, {0, 4122},
(0, 3803}, {0, 4069}, {0, 3892}, {0, 4051}, {0, 3711}, {0, 3878}, {0, 3792}, {0, 3891},
(0, 3881}, {0, 96}, {0, 3567}, {0, 3699}, {0, 3714}, {0, 3481}, {0, 5743}, {0, 3719},
{0, 5744}, {0, 3488}, {0, 3651}, {0, 3342}, {0, 3648}, {0, 3772}, {0, 3421},
(0, 3771}, {0, 3359}, {0, 3750}, {0, 3755}, {0, 3636}, {0, 3748}, {0, 3747}}

14 | shoptimization-v5_WEB.nb

txt = Graphics@Table][
Text[
Style[shoppingList[i], 16, White, Background - Black],
itemCoords[1i]
I, {i, {1, -1}}1;

In[55]

Show[GraphPlot@HighlightGraph]
weightedMeshGraph,
PathGraph[p]

1, txt, ImageSize » Full]

oty 3 L

53T e 2
e S poatits
o e
AL

Out[55]=

ey

T
X
A e
o3

3
o

e g
Do LIy)
ORISR

peSot!

Find best order to visit the items

Idea: make a NEW graph, (a complete graph): vertices are the items, edges are weighted by shortest-
dist from the mesh graph.

Then find a tour of this new graph, and map it back to the mesh graph.

nise;= AbsoluteTiming[

distMatrix = Table[GraphDistance[weightedMeshGraph, s, t],
{s, itemVertices}, {t, itemVertices}];

outsel= {34.4538, Null}

In[57]

- itemGraph = WeightedAdjacencyGraph[distMatrix];
Here’s the shortest path thru all the items:

shoptimization-v5_WEB.nb | 15

nss= {len, path} = FindShortestTour[itemGraph, 1, Length@shoppingList]

ouss- {8567.37, {1, 42, 41, 43,2, 3, 4, 6,5, 16, 17, 18, 19, 14, 13, 12, 7, 9, 8, 10, 11, 15, 21,
23, 25, 24, 22, 20, 26, 30, 29, 28, 27, 31, 32, 33, 35, 34, 36, 37, 40, 39, 38,
58, 54, 51, 50, 56, 55, 60, 49, 47, 48, 46, 59, 52, 62, 44, 61, 45, 57, 53, 63}}

nise)= shoppingList[path]
ous9l= {entrance, fancy cheese, hummus, prosciutto, red wine, greek yogurt, paper towels,
cadburry creme eggs, cadburry chocolate eggs, parmesean cheese, shredded cheese,
cheese stick, cream cheese, canadian bacon (x3), breakfast sausage,
eggs, milk, whole milk, almond milk, coffee creamer, heavy cream, butter,
cottage cheese, chicken, ground turkey, pork butt, beef chuck roast,
froz tater tot, Pirates booty, pom juice, fizzy water, crackers, peanuts,
small flour tortillas, whole wheat flour, yeast (active), pasta - bows,
pasta sauce, canned salmon, hot chocolate mix, Poppyseed salad dressing,
bread, bagels, sweet potatoes, potatoes, grapes, garlic, shallot, red onion,
yellow onion, fresh rosemary, cauliflower, cucumber, carrots, tomatoes,
limes, avocado, bag kale, apples, blueberries, strawberries, orange, exit}

This should be the same distance as traversing associated vertices on the weighted mesh graph:

neo;= GraphDistance[itemGraph, path[1], path[2]]
outol= 262.221

nei1= GraphDistance[weightedMeshGraph, itemVertices[path[1]], itemVertices[path[2]]]
outjei]= 262.221

ne2= GraphDistance[itemGraph, #1, #2] & eee
Partition[path, 2, 1] // Total

oute2l= 8567 .37

nes)= GraphDistance[weightedMeshGraph, itemVertices[#1], itemVertices[#2]] & eee
Partition[path, 2, 1] // Total

outesl= 8567 .37

Here’s the shortest path thru the items, if you get to move through the walls:

ne4:= {lenIgnoringBoundaries, pathIgnoringBoundaries} =
FindShortestTour [itemCoords, 1, Length@shoppingList]
oues- {5818.61, {1, 41, 43, 42,5, 6, 16, 17, 18, 19, 4,2, 3, 7,9, 8, 10, 11, 12, 14, 13, 15, 21,
23, 25, 24, 22, 31, 27, 30, 26, 20, 29, 28, 32, 33, 40, 37, 35, 34, 36, 39, 38,
51, 54, 58, 50, 56, 55, 60, 49, 47, 48, 46, 59, 52, 62, 44, 61, 45, 57, 53, 63}}

However, if you account for the boundaries, then visiting the items in that order is longer than the
shortest path:

16 | shoptimization-v5_WEB.nb

nes= GraphDistance[weightedMeshGraph, itemVertices[#1], itemVertices[#2]] &eee
Partition[pathIgnoringBoundaries, 2, 1] // Total

outiesl= 9807 .88

(The optimal one is less:)

nesi= len

outeel= 8567 .37

Show the optimal path thru the items:

ne71= pathGraphs = FindShortestPath[weightedMeshGraph, #1, #2] &eee
Partition[itemVertices[path], 2, 1] // Map[PathGraph];

nes;= highlight2 = GraphPlot[
HighlightGraph[weightedMeshGraph,
pathGraphs, GraphHighlightStyle -» "DehighlightHide"],
EdgeStyle » Thickness[0.005], ImageSize » Full];

nee;= gItems = Graphics@Table]
With[{pt = itemCoords[path][i1}, {
Text[
Style[shoppingList[path][i], Black, 14, Plain, Background - LightBlue], pt]
}1, {i, Lengthepath}];

shoptimization-v5_WEB.nb | 17

in7o= map = Show[im,
highlight2,
Graphicse {Pink, Line[itemCoords[pathIgnoringBoundaries]]},
gltems,
ImageSize -» Full,
ImagePadding - 10]

beef ¢l k roast=y|eese,ream=r< greek yogurt
small flou Ias
g I I l t' breakfast sausage 1 -.,
AR e i i \
Poppyseed salad dressing pulnlll J‘.'&?booty red wine
3_. h Irey2 Lal.cl ot paper tOWGIS
N fizzy water]
‘i. | iy |
. crackers
out[70}= hot chocolate mix h
whole Wi eat flour cream C eese
yeast (active) cheese sti ck
T shredded_cheese,
P : parmesean cheese
bread l l ' I
"= nagta galice roscmtto
bagels\ned salmon’ CaEE.‘LrXED.OCO'ate eggsfancynummus
SWe g nt=tanaS | /o‘
Nnarrio
fresh rqselerggor g q y
%aUtOIavocappIes N\ s’

Clcibag kale exit

18 | shoptimization-v5_WEB.nb

n71:= Show[map, PlotRange -» {{240, 630}, {50, 280}}]

~"a'.-

sweet potatoes

. canned salmon

potatoes grapes
red onion | strawberries
vellow oAn'“ic";HBﬂtr“C / orangé
out[71}= fresh rosemary, blueberries \
cauliflower limes .
tomatoes \
\ [avocado ~apples
y » o [. g g .
cucumber 4 N\

carrots bag kale

n72= Export["map-1200px.pdf", map, ImageSize -» 1200]
Speak["Done'"]

ouf72l= map-1200px.pdf

