
����������������

���
�����������������������������

Justin Pearson

2014-10-26

�������
Joulies are a product meant to maintain hot coffee at a comfortable temperature longer. They are

sealed metal sphereoids that contain a proprietary material that melts at 140°F. The heat of fusion helps
maintain the coffee’s temperature. You keep them in your coffee cup and dump your coffee over them.
They displace about 1.5 Tbsp per Joulie.

We took two coffee cups, one with 5 Joulies and one without, and filled them with boiling water to

roughly the same level. We measured their temperatures with two digital thermometers. We took pic-
tures of the thermometers with two different cameras: Dad’s Leica handheld digital camera was set to

“time lapse” and snapped a picture every minute, and my Macbook Pro took a picture about every 10

seconds.

We also had a Raspberry Pi with temperature sensors. However, water leaked into the sensors and

corrupted their measurements.

Afterward, Dad manually recorded the temperature of the two thermometers from each of this 30

images.

The Macbook took 180 images. Instead of doing the obvious thing of just looking at the pictures and

writing down the temperatures, I used this as an opportunity to test Mathematica’s ability to classify the

LCD digits.

Specifically, I wanted to see if Mathematica’s Classify() function could identify the digits on the two LCD

thermometers. I found that the classification works well for a single LCD segment (eg the one’s digit) but
a classifier trained on the one’s digit doesn’t necessarily do well on the ten’s or hundred’s digits, and a

classifier trained for one thermometer doesn’t work on another.

I haven’t answered the main question -- do Joulies work -- but it was fun playing around with various
Mathematica image-processing algorithms.

���������������

������� Clear["Global`*"]
SetDirectory[NotebookDirectory[]]

������� /Users/justin/Projects/Joulies/Analysis/MacbookCamera_Analysis

������� show = Show[#, ImageSize → 200] &;

������� filenames = FileNames[

"/Users/justin/Projects/Joulies/Data/MacbookCamera/MacbookCamera_Images/*.

tiff"] // SortBy[#, FileDate[#, "Creation"] &] &;

Length@filenames
Short[filenames]

������� 180

�������������� {/Users/justin/Projects/Joulies/Data/MacbookCamera/MacbookCamera_Images/img
48.tiff, 178,

/Users/justin/Projects/Joulies/Data/MacbookCamera/MacbookCamera_Images/img
227.tiff}

������� timestamps = FileDate[#, "Creation"] & /@ filenames;
First@timestamps
FullForm@%
deltaT = DateDifference[timestamps[[1]], #, "Minute"] & /@ timestamps;

������� Sun 26 Oct 2014 12:15:54GMT-7.

����������������� DateObject[List[2014, 10, 26, 12, 15, 54.`], "Instant", "Gregorian", -7.`]

�������� {timing, rawimages} = AbsoluteTiming[Import /@ filenames];
timing

�������� 6.62154

�������� show@rawimages[[33]]

��������

Ugh, MacBook flips it so the camera looks like a mirror. Correct:

2 ��� read_lcd_from_pictures-WEB.nb

�������� images = ImageReflect[#, Left] & @* ImageRotate[#, 180 Degree] &  /@ rawimages;

imageDims = ImageDimensions@First@images;

�������� Manipulate[show@images[[i]],
{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"}]

��������

�����

��

Pic description:
img 48.tiff - both reading room temp - 67deg F
img 54.tiff - begin to pour into ‘joulie’ cup
57 - begin to pour into ‘control’ cup
58 - fog on lens
227 - last pic before ‘control’ therm turns off

��

����

Crop (trim) the image to this bounding box around the Joulie therm LCD:

read_lcd_from_pictures-WEB.nb ���3

�������� Manipulate[
trimJoulie = ImageTrim[#, {t1, t2}] &;
{Show[images〚i〛,

Epilog → {Opacity[.2], Blue, Rectangle[t1, t2]}, ImageSize → 400],
show@trimJoulie@images〚i〛},

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{t1, {45, 410}}, Locator}, {{t2, {215, 517}}, Locator}

]

��������

�����

��

 ,



Now we have a trimJoulie() function:

4 ��� read_lcd_from_pictures-WEB.nb

�������� trimJoulie@images[[100]]

��������

���������������

Undo the skew.

����������������������������

�������� ManipulateModule{im, im2, dim2},

im = trimJoulie[images〚i〛];
im2 = ImageRotate[im, d Degree];
dim2 = ImageDimensions@im2;

Show[im, ImageSize → {350, 350}],

Show SetAlphaChannel[im2, .7],

GridLines → Range[1, #, 10] & /@ dim2, ImageSize → {350, 350}

,

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{d, -10.5, "Angle (°)"}, -180, 180, Appearance → "Open"}



�����

��

����� (°)

-����

 ,

read_lcd_from_pictures-WEB.nb ���5

��������



The digits seem unskewed according to the gridlines, but the edges of the screen still seem skewed.

��

�������� ManipulateModule{im, im2, dim2, err, tf, lcdCorners},

im = trimJoulie[images〚i〛];
im2 = ImagePerspectiveTransformation[im, {{a, b}, {c, d}}];
dim2 = ImageDimensions@im2;

Show[im, ImageSize → {350, 350}],

Show SetAlphaChannel[im2, .7],

GridLines → Range[1, #, 10] & /@ dim2, ImageSize → {350, 350}

,

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{a, .664}, -1, 1, Appearance → "Open"}, {{b, .152}, -1, 1, Appearance → "Open"},
{{c, -.11}, -1, 1, Appearance → "Open"}, {{d, .68}, -1, 1, Appearance → "Open"}



6 ��� read_lcd_from_pictures-WEB.nb

��������

�����

��

�

�����

�

�����

�

-����

�

����

 ,



read_lcd_from_pictures-WEB.nb ���7

��

�������� ManipulateModule{im, err, tf, lcdCorners, correctCorners},

im = trimJoulie[images〚i〛];
lcdCorners = {c1, c2, c3, c4};
correctCorners = {{1, 50}, {1, 1}, {100, 50}, {100, 1}};
{err, tf} = FindGeometricTransform[

correctCorners, lcdCorners, TransformationClass → "Perspective"];
fixPerspectiveJoulie = ImagePerspectiveTransformation[#, tf, PlotRange → All] &;

Show[im, Epilog → Line[{c1, c2, c4, c3, c1}], ImageSize → {350, 350}],

Show SetAlphaChannel[fixPerspectiveJoulie[im], .7],

GridLines → Range[1, #, 10] & /@ ImageDimensions[fixPerspectiveJoulie[im]],

ImageSize → {350, 350}

,

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{c1, {8, 79}}, Locator}, {{c2, {25, 5}}, Locator},
{{c3, {149, 107}}, Locator}, {{c4, {169, 28}}, Locator}



8 ��� read_lcd_from_pictures-WEB.nb

��������

�����

��

 ,



Now we have a fixPerspectiveJoulie() function:

read_lcd_from_pictures-WEB.nb ���9

�������� show@fixPerspectiveJoulie@images[[1]]
fixPerspectiveJoulie@trimJoulie@images[[1]]

��������

��������

���������������������������

Bounding boxes around three LCD digits:

10 ��� read_lcd_from_pictures-WEB.nb

�������� ManipulateModule{im, box1, box2, box3},

im = fixPerspectiveJoulie@trimJoulie[images〚i〛];
box1 = {c100a, c100b};

box2 = c10a, c10a + c100b - c100a;

box3 = c1a, c1a + c100b - c100a;

getDigitsJoulie =

Table[ImageResize[ImageTrim[#, b], {20, 40}], {b, {box1, box2, box3}}] &;
{Show[im, Epilog → {Opacity[.2], Blue, Rectangle @@@ {box1, box2, box3}},

ImageSize → 350], getDigitsJoulie[im]}

,

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{c100a, {36.85`, 23.8`}}, Locator}, {{c100b, {58.5`, 68.8`}}, Locator},
{{c10a, {62.95`, 24.2`}}, Locator}, {{c1a, {89.`, 23.8`}}, Locator}



��������

�����

��

 ,  , , 

Now we have a getDigitsJoulie() function:

�������� getDigitsJoulie@fixPerspectiveJoulie@trimJoulie@images[[100]]

��������  , , 

������������������

(Note: @* is ‘function compose’)

read_lcd_from_pictures-WEB.nb ���11

�������� digitsPixJoulie = getDigitsJoulie @*fixPerspectiveJoulie @* trimJoulie /@ images;
digitsPixJoulie =

MapImageAdjust @* ColorConvert[#, "Grayscale"] &, digitsPixJoulie, {2};

�������� digitsPixJoulie[[100]]

��������  , , 

�������� Grid[digitsPixJoulie〚1 ;; -1 ;; 30〛, Frame → All]

��������

���������������������������

First make a training set.

�������� Manipulate[digitsPixJoulie[[i]],
{i, 1, Length@digitsPixJoulie, 1, Appearance → "Open"}]

��������

�

�

 , , 

Put it on auto-play, watch it and type the numbers as they play (I put my fingers on 1,2,3,4 and 7,8,9,0).
Starting at index 15, what’s the least-sig digit?

�������� listJoulie = ToExpression /@ Characters@
"109876554322109987766544332211000099988877666544433322211100999888877";

Note: Coulda just repeated this for the whole file. But if it was really long, couldn’t.

12 ��� read_lcd_from_pictures-WEB.nb

�������� trainingDataJoulie = Table[
Rule @@ {digitsPixJoulie[[14 + i, 3]], listJoulie[[i]]}, {i, Length@listJoulie}];

Short@trainingDataJoulie

���������������  → 1, → 0, → 9, → 8, → 7, → 6, → 5, → 5, → 4,

→ 3, → 2, → 2, → 1, → 0, → 9, → 9, → 8, → 7,

→ 7, → 6, → 6, → 5, → 4, → 4, → 3, → 3, → 2,

→ 2, → 1, → 1, → 0, 7, → 8, → 8, → 7, → 7,

→ 6, → 6, → 6, → 5, → 4, → 4, → 4, → 3, → 3,

→ 3, → 2, → 2, → 2, → 1, → 1, → 1, → 0, → 0,

→ 9, → 9, → 9, → 8, → 8, → 8, → 8, → 7, → 7

���������������������������������������

�������� extraTraining = {};
{digitsPixJoulie[[7, 2]] → 7} // AppendTo[extraTraining, #] &;

# → 0 & /@ digitsPixJoulie[[{1, 4, 7}, 1]] // AppendTo[extraTraining, #] &;

# → 0 & /@ digitsPixJoulie[[{-3, -1}, 1]] // AppendTo[extraTraining, #] &;

(# → 1) & /@ digitsPixJoulie[[{10, 20, 30}, 1]] // AppendTo[extraTraining, #] &;
extraTraining = Flatten[extraTraining, 2]

��������  → 7, → 0, → 0, → 0, → 0, → 0, → 1, → 1, → 1

�������� trainingDataJoulie = Join[trainingDataJoulie, extraTraining];

����������������

�������� {timing, c} = AbsoluteTiming[Classify[trainingDataJoulie,
PerformanceGoal → "Quality", Method → "SupportVectorMachine"]]

�������� 23.6254, ClassifierFunction ����� ����� �����
������ �� �������� ��



How does it work? We trained it mostly on the one’s place LCD segment. Perhaps it will work on the

ten’s and hundred’s segments too?

read_lcd_from_pictures-WEB.nb ���13

�������� integerListJoulie = Map[c, digitsPixJoulie, {2}];

�������� showClassifier[inlist_, outlist_] :=
Table[Column@{Show[inlist〚i〛, ImageSize → 10], outlist〚i〛}, {i, Length@inlist}] //

Partition[#, 20] & // Grid[#, Frame → All] &

One’s place:

�������� showClassifier[digitsPixJoulie〚 ;; , 3〛, integerListJoulie〚 ;; , 3〛]

��������

7 7 7 7 7 7 3 7 7 9 0 5 4 2 1 0 9 8 7 6

5 5 4 3 2 2 1 0 9 9 8 7 7 6 6 5 4 4 3 3

2 2 1 1 0 0 0 0 9 9 9 8 8 8 7 7 6 6 6 5

4 4 4 3 3 3 2 2 2 1 1 1 0 0 9 9 9 8 8 8

8 7 7 6 6 6 6 5 5 5 4 4 4 3 9 3 2 2 2 2

1 1 0 0 0 0 9 9 8 8 8 7 7 7 6 6 6 5 5 5

4 4 4 4 3 3 3 2 2 2 2 1 1 1 1 0 0 9 9 9

9 8 8 8 8 7 7 7 7 7 6 6 6 5 5 5 5 4 4 4

4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 9 9 9

Ten’s place:

14 ��� read_lcd_from_pictures-WEB.nb

�������� showClassifier[digitsPixJoulie〚 ;; , 2〛, integerListJoulie〚 ;; , 2〛]

��������

6 6 6 6 0 6 7 4 6 0 0 6 6 6 6 6 5 5 5 5

5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 0 2 0 2 2

2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 0

2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 9 9

Hundred’s place:

�������� showClassifier[digitsPixJoulie〚 ;; , 1〛, integerListJoulie〚 ;; , 1〛]

��������

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7

1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

read_lcd_from_pictures-WEB.nb ���15

Tab view:

�������� (*labels={"Hundred's Place","Ten's Place","One's Place"};
TabView[Table[labels〚i〛->

showClassifier[digitsPixJoulie〚;;,i〛,integerListJoulie〚;;,i〛],{i,3}],3]
*)

Awesome.

�������� joulieTemperatures = integerListJoulie // Transpose // FromDigits;
Short@joulieTemperatures

��������������� {67, 67, 67, 67, 7, 67, 73, 147, 167, 109, 100, 165, 164, 162, 161, 160, 159, 158, 157,
156, 155, 155, 154, 153, 152, 130, 105, 105, 104, 104, 104, 104, 103, 103,
103, 3, 102, 102, 102, 102, 101, 101, 101, 101, 100, 100, 100, 100, 99, 99, 99}

�������� ListPlot[joulieTemperatures, Joined → True]

��������

50 100 150

50

100

150

200

Not bad.

���������������������������������
Repeat the above tweaking for the ‘Control’ thermometer.

����

Crop (trim) the image to this bounding box around the Control therm LCD:

16 ��� read_lcd_from_pictures-WEB.nb

�������� Manipulate

trimControl = ImageRotate[#, d Degree] &@*ImageTrim[#, {t1, t2}] &;

Show[images〚i〛, Epilog → {Opacity[.2], Blue, Rectangle[t1, t2]}, ImageSize → 400],

ShowSetAlphaChannel[trimControl@images〚i〛, .7],

GridLines → Range[1, #, 10] & /@ ImageDimensions[trimControl@images〚i〛],

t1, t2

,

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{t1, {498, 364}}, Locator}, {{t2, {656, 500}}, Locator},
{{d, -29.5}, -180, 180, Appearance → "Open"}



read_lcd_from_pictures-WEB.nb ���17

��������

�����

��

�

-����

 ,

, {498, 364}, {656, 500}

18 ��� read_lcd_from_pictures-WEB.nb

�������� trimControl@images[[33]]

��������

���������������������������

Bounding boxes around three LCD digits:

read_lcd_from_pictures-WEB.nb ���19

�������� ManipulateModule{im, box1, box2, box3},

im = trimControl[images〚i〛];
box1 = {c100a, c100b};

box2 = c10a, c10a + c100b - c100a;

box3 = c1a, c1a + c100b - c100a;

getDigitsControl =

Table[ImageResize[ImageTrim[#, b], {20, 40}], {b, {box1, box2, box3}}] &;
{Show[im, Epilog → {Opacity[.2], Blue, Rectangle @@@ {box1, box2, box3}},

ImageSize → 350], getDigitsControl[im]}

,

{{i, 33, "Frame"}, 1, Length@images, 1, Appearance → "Open"},
{{c100a, {40, 75}}, Locator}, {{c100b, {67, 125}}, Locator},
{{c10a, {72, 76}}, Locator}, {{c1a, {108, 76}}, Locator}



��������

�����

��

 ,  , , 

�������� getDigitsControl@trimControl@images[[33]]

��������  , , 

20 ��� read_lcd_from_pictures-WEB.nb

������������������

�������� digitsControl = getDigitsControl @* trimControl /@ images;
digitsControl =

MapImageAdjust @* ColorConvert[#, "Grayscale"] &, digitsControl, {2};

digitsControl[[
33]]

��������  , , 

���������������������������

�������� Manipulate[digitsControl[[i]], {i, 1, Length@digitsControl, 1, Appearance → "Open"}]

��������

�

�

 , , 

Put it on auto-play, watch it and write it down. Starting at index 13, what’s the least-sig digit?

�������� listControl = ToExpression /@

Characters@"953109987654432110098876654433221009888766554433211000988777";

Note: Coulda just repeated this for the whole file. But if it was really long, couldn’t.

read_lcd_from_pictures-WEB.nb ���21

�������� trainingDataControl = Table[
Rule @@ {digitsControl[[12 + i, 3]], listControl[[i]]}, {i, Length@listControl}];

Short@trainingDataControl

���������������  → 9, → 5, → 3, → 1, → 0, → 9, → 9, → 8, → 7, → 6,

→ 5, → 4, → 4, → 3, → 2, → 1, → 1, → 0, → 0, → 9,

→ 8, → 8, → 7, → 6, → 6, → 5, → 4, → 4, → 3, → 3,

→ 2, → 2, → 1, → 0, → 0, → 9, → 8, → 8, → 8, → 7,

→ 6, → 6, → 5, → 5, → 4, → 4, → 3, → 3, → 2, → 1,

→ 1, → 0, → 0, → 0, → 9, → 8, → 8, → 7, → 7, → 7

����������������

�������� {timing, c2} = AbsoluteTiming[Classify[trainingDataControl,
PerformanceGoal → "Quality", Method → "SupportVectorMachine"]]

{timing, integersControl} = AbsoluteTiming[Map[c2, digitsControl, {2}]];
timing
Short@integersControl

�������� 19.4149, ClassifierFunction ����� ����� �����
������ �� �������� ��



�������� 19.2325

��������������� {{4, 4, 7}, {4, 4, 7}, {4, 4, 7}, {4, 4, 7}, {4, 4, 7}, {4, 4, 7}, {4, 4, 7}, {4, 4, 7},
{4, 4, 7}, {4, 4, 0}, {4, 4, 4}, {4, 4, 2}, 157, {4, 4, 8}, {4, 4, 8}, {4, 4, 8},
{4, 4, 8}, {4, 4, 7}, {4, 4, 7}, {4, 4, 7}, {4, 4, 6}, {4, 4, 6}, {4, 4, 6}, {4, 4, 6}}

�����������������
How does it work? We trained it mostly on the one’s place LCD segment. Perhaps it will work on the

ten’s and hundred’s segments too?

One’s digit:

22 ��� read_lcd_from_pictures-WEB.nb

�������� showClassifier[digitsControl〚 ;; , 3〛, integersControl〚 ;; , 3〛]

��������

7 7 7 7 7 7 7 7 7 0 4 2 9 5 3 1 0 9 9 8

7 6 5 4 4 3 2 1 1 0 0 9 8 8 7 6 6 5 4 4

3 3 2 2 1 0 0 9 8 8 8 7 6 6 5 5 4 4 3 3

2 1 1 0 0 0 9 8 8 7 7 7 6 5 5 4 4 4 3 2

2 2 1 0 0 0 9 9 8 8 8 7 7 6 6 5 5 5 4 4

3 3 2 2 1 1 1 0 0 9 9 8 8 7 7 7 6 6 5 5

5 4 4 4 3 3 2 2 2 0 0 0 0 0 9 9 9 8 8 8

7 7 7 7 4 6 5 5 5 5 4 4 3 3 3 3 2 2 2 1

1 1 0 0 4 9 9 9 9 8 8 8 8 7 7 7 6 6 6 6

Seems pretty good!

Ten’s digit:

read_lcd_from_pictures-WEB.nb ���23

�������� showClassifier[digitsControl〚 ;; , 2〛, integersControl〚 ;; , 2〛]

��������

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Not great.

Hundred’s digit:

24 ��� read_lcd_from_pictures-WEB.nb

�������� showClassifier[digitsControl〚 ;; , 1〛, integersControl〚 ;; , 1〛]

��������

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

�������� controlTemperatures = integersControl // Transpose // FromDigits;

�������� ListPlot[controlTemperatures, Joined → True]

��������

50 100 150

440

442

444

446

448

Since it gets so many of the tens’ and hundred’s wrong, let’s input them manually.

��
The above classification is very sensitive to brightness of the images. The classifier was trained from

the one’s digit, and sometimes it doesn’t do very well on the ten’s or hundred’s digits. Since the hun-
dred’s and ten’s place doesn’t change very quickly, it’s not much trouble to just write them down

manually.

read_lcd_from_pictures-WEB.nb ���25

�������� Manipulate[digitsControl〚i〛, {i, 1, Length@digitsControl, 1, Appearance → "Open"}]

��������

�

�

 , , 

The format x, y→ z means: frames y thru z display digit x.

�������� Clear[toRange]
toRange[{x_, y_ → z_}] := ConstantArray[x, z - y + 1];
toRange[list_] := list // Partition[#, 2] & // Map[toRange, #] & // Flatten

Ten’s place:

�������� controlTensPlace =

toRange@{6, 1 → 9, 2, 10 → 10, 8, 11 → 11, 9, 12 → 12, 8, 13 → 17, 7, 18 → 31, 6, 32 → 47,
5, 48 → 66, 4, 67 → 86, 3, 87 → 109, 2, 110 -> 134, 1, 135 → 165, 0, 166 → 180};

Hundred’s place:

�������� controlHundredsPlace = toRange@{0, 1 → 9, 1, 10 → 180};

�������� controlOnesPlace = integersControl〚 ;; , 3〛;
controlTemperatures =

FromDigits /@ {controlHundredsPlace, controlTensPlace, controlOnesPlace};

ListPlot[controlTemperatures, Joined -> True]

��������

50 100 150

50

100

150

200

Future work: Another workaround: use the one’s digit 0->9 transition to tell when the ten’s digit should

change

The one’s digit is well-classified after it stops bonking around after index 15 or so. So let’s just enter
manually for 1-15 and then rely on the one’s digit to tell us when it’s changing:

26 ��� read_lcd_from_pictures-WEB.nb

������������
�������� plot = ListPlot[{{deltaT, joulieTemperatures}, {deltaT, controlTemperatures}},

AxesLabel → {"Elapsed time (min)", "Temp of liquid (°F)"},
PlotLegends → {"Joulie Cup", "Control Cup"},
PlotMarkers → {, 5}, Joined → True, PlotStyle → Thin,
PlotLabel → "Do 'Joulies' help maintain water temperature?", ImageSize → 600]

��������





















 











 



















 

   













 

10 20 30 40
Elapsed time (min)

50

100

150

200

Temp of liquid (°F)
Do 'Joulies' help maintain water temperature?

 Joulie

 Control

�����������������

�������� dad = Import[
"/Users/justin/Projects/Joulies/Analysis/DadsCamera_Analysis/data_dadcamera.txt

", "Table"];
Length@dad

�������� 30

�������� dadJoulie = First@Transpose@dad;
dadControl = Last@Transpose@dad;

read_lcd_from_pictures-WEB.nb ���27

�������� ListPlot[{dadJoulie, dadControl}]

��������

5 10 15 20 25 30

120

130

140

150

160

170

180

I shifted dad’s time axes to get it to line up:

�������� dadTime = Range[Length@dadJoulie] + 1.3;

�������������

�������� plot = ListPlot[{{deltaT, joulieTemperatures},
{deltaT, controlTemperatures}, {dadTime, dadJoulie}, {dadTime, dadControl}},

AxesLabel → {"Elapsed time (min)", "Temp of liquid (°F)"},
PlotLegends → {"Joulie Cup - MacBook", "Control Cup - MacBook",

"Joulie Cup - Dad's Camera", "Control Cup - Dad's Camera"},
PlotMarkers → {{, 5}, {, 5}, {○, 10}, {○, 10}}, Joined → True, PlotStyle → Thin,
PlotLabel → "Do 'Joulies' help maintain water temperature?", ImageSize → 600]

��������





















 











 



















 

   













 

○
○ ○

○
○
○ ○

10 20 30 40
Elapsed time (min)

50

100

150

200

Temp of liquid (°F)
Do 'Joulies' help maintain water temperature?

 Joulie

 Control

○ Joulie

○ Control

28 ��� read_lcd_from_pictures-WEB.nb

�������� (*["~/Desktop/joulie_plot1.png",plot,ImageResize→120]*)

�������� (*Export["~/Desktop/macbook_temp_data.txt",
{QuantityMagnitude@deltaT,joulieTemperatures,controlTemperatures},"Table"]*)

���������������������������������
JPP: I think we still need to know how much water was in each of the cups. . . . Dad can measure the

volume of his mugs.

Dad: Up to the water level visible in the Joulie-filled cup is 276 ml, give or take about 5%.

Spence: The Joulie information packet says: “0.75oz/1.5Tbsp displaced per Joulie; 4oz/118mL regu-
lated per Joulie.”

�������� numJoulies = 5;
fullCupMl = 276; (* ml *)

mlPerTbsp = 14.7868; (* source: google *)

joulieVolTbsp = 1.5;
totalJoulieVolMl = numJoulies * joulieVolTbsp * mlPerTbsp;
volWaterJoulie = fullCupMl - totalJoulieVolMl

�������� 165.099

Specific heat of water:

TODO: more on this.

read_lcd_from_pictures-WEB.nb ���29

