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Problem statement
Check out this strange behavior:
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This is quite close to π/2:
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The next term in the series is a little farther away from π/2:
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It only gets worse from there:
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What’s going on here?
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Analysis
Each integral is a product of scaled sinc functions, which corresponds to a convolution of scaled rect 
functions in the Fourier domain. 
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∞ Sin[x]

x
Sin[x/3]
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= 1
2 ∫-∞

∞ Sin[x]
x

Sin[x/3]
x/3 ...ⅆx functions are all even

= 1
2 ℱ Sin[x]x

Sin[x/3]
x/3 ... (0) def of fourier transform

= 1
2 ℱ Sin[x]x ★ ℱ Sin[x/3]x/3 ★ ... (0) FT of product = conv of FTs

Next we use the fact that the FT of a sinc is a rect. Specifically:

ℱ Sin[x/c]x/c  = cπ UnitBox[cπ x]

Example:

�������� c = 3;

ft = FourierTransform
Sin[x / c]

x / c
, x, s, FourierParameters → {0, -2 π} /. s → x;

box = c π UnitBox[c π x];
Plot[{ft, .2 + box}, {x, -.1, .1},
Exclusions → None,
PlotRange → All,
PlotLegends → {"F(sinc)(x/3)", box}]
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So our integral becomes
1
2 ℱ Sin[x]x ★ ℱ Sin[x/3]x/3 ★ ... (0)

= 1
2 (π UnitBox[π x]★ 3π UnitBox[3π x]★ ...) (0)

We now study the series of convolutions π UnitBox[π x]★ 3π UnitBox[3π x]★...

The UnitBoxes:
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�������� cs = Range[1, 9, 2];
boxes = Table[π c UnitBox[π c x], {c, cs}];
Plot[boxes, {x, -.2, .2},
Exclusions → None,
PlotRange → All,
PlotLegends -> "Expressions"]
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They all have unit area:
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�������� {1, 1, 1, 1, 1}

The boxes’ widths follow a simple pattern as they get smaller:

�������� centerWidth[box_] := ArcLength@ImplicitRegionReducebox == box /. x → 0, {x}

�������� centerWidth /@ boxes
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

Convolving these boxes together yields a progressively smoother function.

Here is the succession of convolutions

π UnitBox[π x]
π UnitBox[π x]★ 3π UnitBox[3π x]
π UnitBox[π x]★ 3π UnitBox[3π x]★ 5π UnitBox[5π x]
...

�������� convs = FoldListConvolve[#1, #2, x, s] /. s → x &, boxes;

4 ���  borwein-integrals.nb



�������� Plot[convs, {x, -.3, .3}, PlotRange → All, Exclusions → None, PlotLegends → cs,
PlotLabel → "Successive box-convolutions shrink the plateau around x=0."]

��������

-0.3 -0.2 -0.1 0.1 0.2 0.3

0.5

1.0

1.5

2.0

2.5

3.0

Successive box-convolutions shrink the plateau around x=0.

1

3

5

7

9

Zoom in:

�������� Plot[convs, {x, -.3, .3}, PlotRange → {{0, .2}, {3, 3.2}}, Exclusions → None]
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At 0, each convolution takes the value π:

�������� convs /. x → 0

�������� {π, π, π, π, π}

That’s why the integrals ∫0
∞ Sin[x]

x
Sin[x/3]
x/3

Sin[x/5]
x/5 ...ⅆx have value π/2.

However, successive convolutions’ widths get smaller:

�������� centerWidth /@ convs
% // N
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�������� {0.31831, 0.212207, 0.148545, 0.103072, 0.067704}
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�������� ListLinePlot[{cs, %}, PlotRange → {Automatic, {0, Automatic}},
PlotMarkers → {Automatic, 20},
PlotLabel → "Widths of plateaus of successive convolutions",
PlotLegends → {"found with symbolic convolutions"}]
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Does this sequence stay positive forever, or does it cross zero?

Brute-force find a pattern:

�������� widths = centerWidth /@ convs
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�������� FindSequenceFunction[{cs, widths}, x]
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1

π
+

PolyGamma0, 3
2
 - PolyGamma0, 1

2
+

1+x
2



2 π

�������� FullSimplify[%, Assumptions → x > 0]

�������� -

-4 + HarmonicNumber x
2
 + Log[4]

2 π

�������� widths2 = % /. x → Range[1, 19, 2];
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�������� ListLinePlot[{{cs, widths}, {Range[1, 19, 2], widths2}},
PlotMarkers → {Automatic, 20},
PlotLegends →

{"found with symbolic convolutions", "HarmonicNumber seq from MMA"},
PlotLabel → "Widths of plateaus of successive convolutions"]
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■ HarmonicNumber seq from MMA

So it looks like the x /15 term has a “negative” width, indiciating the plateau has been convolved away.

Besides this weird formula with harmonic numbers, there is a simpler way to express the widths of the 

convolutions. Convolving a box with a smaller box of width c reduces the width of the flat center region 

by c. So the width of successive box-convolutions can be found by successively subtracting box widths 

from the width of the original box 1 /π:

�������� FoldList[Subtract, centerWidth /@ boxes]
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This matches the widths we found with symbolic convolution:

�������� centerWidth /@ convs
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This is good because the closed-form expression of the x /15 convolution is too big for Mathematica.

This matches the widths of our symbolic convolutions, as well as our werd formula with harmonic 

numbers:

�������� widths3 = Block[{cs, boxes, convWidths},
cs = Range[1, 19, 2];
boxes = Table[π c UnitBox[π c x], {c, cs}];
convWidths = FoldList[Subtract, centerWidth /@ boxes]

]
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�������� ListLinePlot[
{{cs, widths}, {Range[1, 19, 2], widths2}, {Range[1, 19, 2], widths3}},
PlotMarkers → {Automatic, 20},
PlotLegends → {"found with symbolic convolutions",

"HarmonicNumber seq from MMA", "Differences in box widths"},
PlotLabel → "Widths of plateaus of successive convolutions"]
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◆ Differences in box widths

The curve goes negative at x=15, meaning the convolutions have eaten up the entire flat center region 

at the x /15 convolution, so the value of the FT at 0 is less than π/2. I think it would be difficult to figure 

out how much less that π/2 it is; it’s probably easiest to just perform the infinite integral.
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