https://youtu.be/UUQ8BXxYWR4do

Paxos In Pictures

Quick tutorial of Lamport's Distributed Consensus Algorithm

Justin Pearson
May 25, 2017

Paxos: Problem Statement

 Network of computers
e Client(s) gives computer(s) a value(s)

 Get them to agree on some value

Paxos: Problem Statement

18

T —

*

 Network of computers
e Client(s) gives computer(s) a value(s)

 (Get them to agree on some value

Paxos: Problem Statement

_E

”fOO n

e o

 Network of computers
e Client(s) gives computer(s) a value(s)

 (Get them to agree on some value

Paxos: Problem Statement

- —
[V

d ‘_ﬂ

Ilbarll

 Network of computers
e Client(s) gives computer(s) a value(s)

 (Get them to agree on some value

Paxos: Problem Statement

_E

”fOO n

xﬁ "foo" H 4_{1

=Bar
"fOO n

 Network of computers
e Client(s) gives computer(s) a value(s)

 (Get them to agree on some value

Paxos: Problem Statement

- —
[V

d ‘_ﬂ

Ilbarll

 Network of computers
e Client(s) gives computer(s) a value(s)

 (Get them to agree on some value

Paxos: Problem Statement

_E

66",
bar

o= v BT

‘bar

 Network of computers
e Client(s) gives computer(s) a value(s)

 (Get them to agree on some value

Resources

Lamport, Leslie (2001). Paxos Made Simple ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001) 51-58.

http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#paxos-simple

https://en.wikipedia.org/wiki/Paxos_(computer_science)

pdf (page 9 of 14)

A propaser issues & proposal by sending, to some set of acceptors, n request
that the proposal be accepted. (This need not be the same set of acceptors
that responded to the initial requests.) Let's call this an accept request.
This describes n proposer’s algorithm. What about an acceptor? It can
receive two kinds of requests from proposers: prepare requests and accept
requests, An acceptor can ignore any request without compromising safety.
So, we need to say only when it is allowed to respond to a request. It can

always respond to a prepare request. It can respond to an accep! request,
accepting the proposal, iff it has not promised not to. In other words:

P1%. An acceptor can accept a proposal numbered n iff it has not responded
to » prepare request having a number greater than n.

Observe that P1° subsumes P1.

We now have a complete algorithm for choosing a value that satisfies the
required safety properties—assuming unique proposal numbers. The final
algorithm is obtained by making one small optimization.

Suppose an acceptor receives a prepare request numbered n, but it has
alrendy responded to & prepare request numbered greater than n, thereby
promising not to accept any new proposal numbered n. There is then no
reason for the acceptor to respond to the new prepare request, since it will
not accept the proposal pumbered n that the proposer wants to issue. So
we have the acceptor ignore such a prepare request. We also have it ignore
a prepare request for a proposal it has already accepted.

With this optimization, an acceptor peeds to remember only the highest-
numbered proposal that it has ever accepted and the number of the highest-
numbered prepare request to which it has responded. Because P2° must
be kept invarinnt regardless of failures, an acceptor must remember this
information even if it fails and then restarts. Note that the proposer can
always abandon a proposal and forget all about it—as long as it never tries
10 issue another proposal with the same number.

Putting the actions of the proposer and acceptor together, we see that
the algorithm operates in the following two phases.

Phase 1. (a) A proposer selects a proposal number n and sends a prepare
request with number n to a majority of acoeptors,
(b) If an acceptor receives & prepare request with number n greater
than that of any prepare request to which it has already responded,
then it responds to the request with a promise not to acoept any more
proposals numbered Jess than n and with the highest-numbered pro-
posal (if any) that it has accepted.

5

de

0le’

Phase 2. (a) If the proposer reccives a response to its prepare roquests
(numbered n) from a majority of acceptors, then it sends an accept
roquest to cach of those acceptors for a proposal numbered n with a
value v, where v is the value of the highest-numbered proposal among
the responses, or is any value if the responses reported no proposals.

(b) If an acceptor receives an accept request for a proposal numbered
n, it nooepts the propasal unless it has already responded to a prepare
request having a number greater than n.

A proposer can make multiple proposals, so long as it follows the algorithm
for each one. It can abandon a proposal in the middle of the protocol at any
time. (Correctness = maintained, even though requests and/or responses
for the proposal may arrive at their destinations long after the proposal
was abandoned.) It is probably a good idea to abandon a proposal if some
proposer has begun trying to issue a higher-numbered one. Therefore, if an
acceptor ignores a prepare or accept request because it has already received
a prepare request with a higher number, then it should probably inform
the proposer, who should then abandon its propesal. This is a performance
optimization that does not affect correctness,

2.3 Learning a Chosen Value

To learn that a value has been chosen, a Jearner must find out that a pro-
posal has been accepted by a majority of acceptors. The obvious algorithm
i% to have each acceptor, whenever it accepts a proposal, respond to all
lenrners, sending them the proposal. This allows lewrners to find out about
a chosen value as soon as possible, but it requires each acceptor to respond
to each learner—a number of responses equal to the product of the number
of acceptors and the number of learners,

The assumption of non-Byzantine failures makes it easy for one learner
to find out from another lenrner that a walue has been accepted. We can
have the acceptors respond with their acceptances to a distinguished learner,
which in turn informs the other learners when n value has been chosen. This
approach requires an extra round for all the learners to discover the chosen
value, It is also less reliable, since the distinguished learner could fail. But
it requires a number of responses equal oaly to the sum of the number of
scceptors and the number of learners,

More generally, the acceptors could respond with their acceptances to
some set of distinguished learners, each of which can then inform all the
learners when a value has been chosen. Using & larger set of distinguished

800

'Paxos Simp

A propaser issues & proposal by sending, to some set of acceptors, n request
that the proposal be accepted. (This need not be the same set of acceptors
that responded to the initial requests.) Let's call this an accept request.
This describes n proposer’s algorithm. What about an acceptor? It can
receive two kinds of requests from proposers: prepare requests and accept
requests, An acceptor can ignore any request without compromising safety.
So, we need to say only when it is allowed to respond to a request. It can

always respond to a prepare request. It can respond to an accep! request,
accepting the proposal, iff it has not promised not to. In other words:

P1%. An acceptor can accept a proposal numbered n iff it has not responded
to » prepare request having a number greater than n.

Observe that P1° subsumes P1.

We now have a complete algorithm for choosing a value that satisfies the
required safety properties—assuming unique proposal numbers. The final
algorithm is obtained by making one small optimization.

Suppose an acceptor receives a prepare request numbered n, but it has
alrendy responded to & prepare request numbered greater than n, thereby
promising not to accept any new proposal numbered n. There is then no
reason for the acceptor to respond to the new prepare request, since it will
not accept the proposal pumbered n that the proposer wants to issue. So
we have the acceptor ignore such a prepare request. We also have it ignore
a prepare request for a proposal it has already accepted.

With this optimization, an acceptor peeds to remember only the highest-
numbered proposal that it has ever accepted and the number of the highest-
numbered prepare request to which it has responded. Because P2° must
be kept invarinnt regardless of failures, an acceptor must remember this
information even if it fails and then restarts. Note that the proposer can
always abandon a propoesal and forget all about it—as long as it never tries
1o issue another proposal with the same number.

Putting the actions of the proposer and acceptor together, we see that
the algorithm operates in the following two phases.

Phase 1, (a) A proposer sedects a proposal number n and sends a prepare
request with number n to a majority of acceptors.
(b) If an acceptor receives a prepare request with number n greater
than that of any prepare request to which it has already responded,
then it responds to the request with & promise not to accept any more
propesals numbered Jess than n and with the highest-numbered pro-
posal (if any) that it has accepted.

5

Phase 2. (a) If the proposer reccives a response to its prepare reguests
(numbered n) from a majority of acceptors, then it sends an accept
roquest to cach of those acceptors for a proposal numbered n with a
value v, where v is the value of the highest-numbered proposal among
the responses, or is any value if the responses reported no proposals.
(b) If an acceptor receives an accept request for a proposal numbered
n, it nooepts the proposal unless it has already responded to a prepare
request having & number greater than n.

A proposer can make multiple proposals, so long as it follows the algorithm
for each one. It can abandon a proposal in the middle of the protocol at any
time. (Correctness = maintained, even though requests and/or responses
for the proposal may arrive at their destinations long after the proposal
was abandoned.) It is probably a good idea to abandon a proposal if some
proposer has begun trying to issue a higher-numbered one. Therefore, if an
acceptor ignores a prepare or accept request because it has already received
a prepare request with a higher number, then it should probably inform
the proposer, who should then abandon its propesal. This is a performance
optimization that does not affect correctness,

2.3 Learning a Chosen Value

To learn that a value has been chosen, a Jearner must find out that a pro-
posal has been accepted by a majority of acceptors. The obvious algorithm
is to have each acceptor, whenever it accepts a proposal, respond to all
lenrners, sending them the proposal. This allows learners to find out about
a chosen value as soon as possible, but it requires each acceptor to respond
to each learner—a number of responses equal to the product of the number
of acceptors and the number of learners,

The assumption of non-Byzantine failures makes it easy for one learner
to find out from another lenrner that a walue has been accepted. We can
have the acceptors respond with their acceptances to a distinguished learner,
which in turn informs the other learners when n value has been chosen. This
approach requires an extra round for all the learners to discover the chosen
value, It is also less reliable, since the distinguished learner could fail. But
it requires a number of responses equal oaly to the sum of the number of
scceptors and the number of learners,

More generally, the acceptors could respond with their acceptances to
some set of distinguished learners, each of which can then inform all the
learners when a value has been chosen. Using & larger set of distinguished

Phase 1. (a) A proposer selects a proposal number n and sends a prepare
request with number n to a majority of acceptors.

(b) If an acceptor receives a prepare request with number n greater
than that of any prepare request to which it has already responded,
then it responds to the request with a promise not to accept any more
proposals numbered less than n and with the highest-numbered pro-
posal (if any) that it has accepted.

Phase 2. (a) If the proposer receives a response to its prepare requests
(numbered n) from a majority of acceptors, then it sends an accept
request to each of those acceptors for a proposal numbered n with a
value v, where v is the value of the highest-numbered proposal among
the responses, or is any value if the responses reported no proposals.

(b) If an acceptor receives an accept request for a proposal numbered
n, it accepts the proposal unless it has already responded to a prepare
request having a number greater than n.

Phase 3.

To learn that a value has been chosen, a learner must find out that a pro-
posal has been accepted by a majority of acceptors. The obvious algorithm
is to have each acceptor, whenever it accepts a proposal, respond to all
learners, sending them the proposal.

Outline

, he Algorithm

 Example: how it works initially
 Example: how it handles conflicts

« Example: how it works after consensus

Proposer Acceptor

"Want consensus! How about Vaefauit?"

PrepareRequest[n]
—>

Learner
‘proposal number"\

Proposal[n,V]

‘proposal value'
-—*

It n >= max rx'd PrepReq,
‘New prepreq! Here is my highest Proposal’s value.”

ResponseloPrepareRequest| Proposallm,w] or None |

—

If rx'd a majority,
v = max(rx'd Proposals).v or Vdefault

AcceptRequest| Proposal[n,v | |

—_—

"This Proposer gained majority support from As."

Decision| Proposal[n,v] |
————————————

It rx'd a majority,
value = v

Outline

* [he Algorithm
, Example: how it works initially
 Example: how it handles conflicts

« Example: how it works after consensus

Alice

L

A

P

Alice

"aliz rulz"

L

A

P

Vdefault

Alice

Alice [r|lAllL
Vdefault = aliz rulz"

prepare request: 1

| Bob

prepare request: 1

Alice

F)

A

L

Vdefault =

prepare request: 1

prepare request: 1

prepare request: 1

"aliz rulz"

| Bob

>

Alice

Vdefault =

ResponseToPrepareRequest] None |

F)

A

L

prepare request: 1

prepare request: 1

"aliz rulz"

| Bob

prepare request: 1 A

AI
v

Alice |r|lallL
Vdefault = aliz rulz"

 Bob [P[lA]|L
|

prepare request: 1

prepare request: 1

] > | A

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |«

ResponseToPrepareRequest][None | A
I

Alice |rllallL
Vdefault = aliz rulz"

 Bob [P[lA]|L
|

prepare request: 1

prepare request: 1

] > | A

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |«

ResponseToPrepareRequest][None | A
I

[None]

ResponseTloPrepareRequest

Alice |r|lallL
Vdefault = aliz rulz"

 Bob [P[lA]|L
|

prepare request: 1

prepare request: 1

] > | A

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |«

P |«

ResponseToPrepareRequest][None | A
I

If rx'd a majority,
v = max(rx'd Proposals).v or Vdetaurt

ResponseToPrepareRequest] None | A

Alice |rllallL
Vdefault = aliz rulz"

| Bob

prepare request: 1

prepare request: 1

=)@ prepare request: 1 A
>

<

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A

P |«

If rx'd a majority,
v = max(rx'd Proposals).v or Vdetaurt

| AcceptRequest][Proposal[1,"aliz rulz"]]

| AcceptRequest[Proposal[1,"aliz rulz"]]

[None]

ResponseTloPrepareRequest

Alice |rllallL
Vdefault = aliz rulz"

-

 Bob [P[lA]|L
|

prepare request: 1
prepare request: 1

-

l > A

P prepare request: 1 A
>

<

ResponseToPrepareRequest] None |

P |«

P |«

ResponseToPrepareRequest][None | A
I

If rx'd a majority,

AcceptRequest[Proposal[1,"aliz rulz"]] A\

v = max(rx'd Proposals).v Or Vdets

| AcceptRequest][Proposal[1,"aliz rulz"]]

| AcceptRequest[Proposal[1,"aliz rulz"]]

[None]

ResponseTloPrepareRequest

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A

P |«

[None]

ResponseTloPrepareRequest

v = max(rx'd Proposals).v or Vdetaurt

| AcceptRequest][Proposal[1,"aliz rulz"]]

I
I
If rx'd a majority, |
I
I
|

| AcceptRequest[Proposal[1,"aliz rulz"]]

Decision[Proposal[n,v]] L

AcceptRequest[Proposal[1,"aliz rulz"]] A\

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A

P |«

[None]

ResponseTloPrepareRequest

v = max(rx'd Proposals).v or Vdetaurt

| AcceptRequest][Proposal[1,"aliz rulz"]]

I
I
If rx'd a majority, |
I
I
|

| AcceptRequest[Proposal[1,"aliz rulz"]]

Decision[Proposal[n,v]] L

AcceptRequest[Proposal[1,"aliz rulz"]] A\

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

Alice [rllA]lL (Bob [r][AflL Carl PlfAflL
Vdefault = aliz rulz" |
| prepare request: 1 } > | A
I
| prepare request: 1 I > | A
=) prepare request: 1 A I
> I
<
ResponseToPrepareRequest] None | |
I

P |« ResponseToPrepareRequest][None | A
I

P |«

[None]

ResponseTloPrepareRequest

v = max(rx'd Proposals).v or Vdetaurt

| AcceptRequest][Proposal[1,"aliz rulz"]]

I
I
If rx'd a majority, |
I
I
!

| AcceptRequest[Proposal[1,"aliz rulz"]]

Decision[Proposal[n,v]] L

AcceptRequest[Proposal[1,"aliz rulz"]] A\

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A
I

P |«

[None]

ResponseTloPrepareRequest

v = max(rx'd Proposals).v or Vdetaurt

| AcceptRequest][Proposal[1,"aliz rulz"]]

I
I
If rx'd a majority, |
I
I
!

| AcceptRequest[Proposal[1,"aliz rulz"]]

Decision[Proposal[n,v]] L

AcceptRequest[Proposal[1,"aliz rulz"]] A\

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

If rx'd a majority,
value = v = "aliz rulz"

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A
I

I
P |« I ResponseToPrepareRequest] None | A
If rx'd a majority, |
v = max(rx'd Proposals).v or Vdetaurt |
| AcceptRequest][Proposal[1,"aliz rulz"]] I > A
| AcceptRequest][Proposal[1,"aliz rulz"]] } » | A
AcceptRequest[Proposal[1,"aliz rulz"]] A\ Decision[Proposal[n,v]] L
Decision[Proposal[n,v]] Decision[Proposal[n,v]] —] |
I
/_\ L[L
Decision[Proposal[n,v]]

If rx'd a majority,
value = v = "aliz rulz"

If rx'd a majority,
value = v = "aliz rulz"

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A
I
P |« I ResponseToPrepareRequest] None | A
If rx'd a majority, | :
v = max(rx'd Proposals).v or Vdetaurt |
| AcceptRequest][Proposal[1,"aliz rulz"]] I > A
H| AcceptRequest[Proposal[1,"aliz rulz"]] } > | A
AcceptRequest[Proposal[1,"aliz rulz"]] A\ Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

) E 0 N\
Decision[Proposal[n,v] ! : If rx'd a majority, :

4

If rx'd a majority,

PNt 0 Decision[Proposal[n,v]]
value = v = "aliz rulz

value = v = "aliz rulz"
L .

F

I
I
If rx'd a majority, |
value = v = "aliz rulz' I
I
I

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A
I
P |« I ResponseToPrepareRequest] None | A
If rx'd a majority, | :
v = max(rx'd Proposals).v or Vdetaurt |
| AcceptRequest][Proposal[1,"aliz rulz"]] I > A
H| AcceptRequest[Proposal[1,"aliz rulz"]] } > | A
AcceptRequest[Proposal[1,"aliz rulz"]] A\ Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

L E 07 N\
Decision[Proposal[n,v]] : :If rx'd a majority, :

4

If rx'd a majority,

PNt 0 Decision[Proposal[n,v]]
value = v = "aliz rulz

value = v = "aliz rulz"
L - :

F

I
I
If rx'd a majority, |
value = v = "aliz rulz' I
I
I

A

Alice |rP|lA[lL | Bob [r][AflL
Vdefault = aliz rulz" |

prepare request; 1 | »| A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A
I
P |« I ResponseToPrepareRequest] None | A
If rx'd a majority, | :
v = max(rx'd Proposals).v or Vdetaurt |
| AcceptRequest][Proposal[1,"aliz rulz"]] I > A
H| AcceptRequest[Proposal[1,"aliz rulz"]] } > | A
AcceptRequest[Proposal[1,"aliz rulz"]] A\ Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

s S 17 N
: :If rx'd a majority, :

If rx'd a majority, value = v = "aliz rulz"

value = v = "aliz rulz" |]
K

I
I
If rx'd a majority, |L[* | Decision[Proposal[n,v]]
: :
I
I

Decision[Proposal[n,v]]

value = v = "aliz rulz*

Decision[Proposal[n,v]]

Alice |rllallL
Vdefault = aliz rulz"

 Bob [P[lA]|L
|

prepare request: 1

prepare request: 1

] > | A

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |«

P |«

ResponseToPrepareRequest][None | A

If rx'd a majority,

v = max(rx'd Proposals).v Or Vdets

| AcceptRequest][Proposal[1,"aliz rulz"]]

| AcceptRequest[Proposal[1,"aliz rulz"]]

[None]

ResponseTloPrepareRequest

AcceptRequest[Proposal[1,"aliz rulz"]] A\

Decision[Proposal[n,v]] L

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

)

If rx'd a majority,
value = v = "aliz rulz"

4

Decision[Proposal[n,v]]

L

:If rx'd a majority,
value = v = "aliz rulz’

If rx'd a majority, |L[®
value = v = "aliz rulz®) ,

Decision[Proposal[n,v]]

/\L<

If rx'd a majority,
value = v = "aliz rulz"

' If rx'd a majority,
| value = v = "ali

rulz"

Decision[Proposal[n,v]]

Alice |rllallL
Vdefault = aliz rulz"

| Bob

prepare request: 1

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |«

P |«

ResponseToPrepareRequest][None | A

If rx'd a majority,

v = max(rx'd Proposals).v Or Vdets

| AcceptRequest][Proposal[1,"aliz rulz"]]

| AcceptRequest[Proposal[1,"aliz rulz"]]

[None]

ResponseTloPrepareRequest

AcceptRequest[Proposal[1,"aliz rulz"]] A\

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

)

If rx'd a majority,
value = v = "aliz rulz"

L

If rx'd a majority, |L[®
value = v = "aliz rulz®) ,

4

Decision[Proposal[n,v]]

:If rx'd a majority,
value = v = "aliz rulz’

Decision[Proposal[n,v]]

/\L<

If rx'd a majority,
value = v = "aliz rulz"

If rx'd a majority,
value = v = "al

rulz"

Decision[Proposal[n,v]]

>|

Decision[Proposal[n,v]]

Alice [Pl AlfL | Bob |r][A]lL
Vdefault = aliz rulz" |

prepare request; 1 | > A

prepare request: 1

prepare request: 1

'U
AI
\ 4

>

ResponseToPrepareRequest] None |

P |« ResponseToPrepareRequest][None | A
I
P |« I ResponseToPrepareRequest] None | A
If rx'd a majority, | :
v = max(rx'd Proposals).v or Vdetaurt |
| AcceptRequest][Proposal[1,"aliz rulz"]] I > A
H| AcceptRequest[Proposal[1,"aliz rulz"]] } > | A
AcceptRequest[Proposal[1,"aliz rulz"]] A\ Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

)

—>| L

.

:If rx'd a majority, :
Decision[Proposal[n,v]] EV8.|U€ =v ="aliz I’EJ|Z"

value = v = "aliz rulz" | ' : :

L : :
| { | : :
| If rx'd a majority, |L R | : Decision[Proposal[n,v]] :

]] :

[
] value = v = "aliz rulz) , :
< I If rx'd a majority, 5 Decision[Proposal[n,v
If rx'd a majority, | value = v = "aliz rulz" —[—w :

"ali ! Decision[P I,
value = v = "aliz rulz I | : ecision[Proposal[n,v] |
—_ o e e — — — — e eeeeerereaaaaaaaaas Hrx'd-a maj@.r.ity’

value = v = "aliz rulz"

4

If rx'd a majority,

Outline

* [he Algorithm
 Example: how it works initially
' Example: how it handles conflicts

« Example: how it works after consensus

L

A

P

Alice

"aliz rulz"

L

A

P

Vdefault

Alice

L
‘carl 4vr"

<C
Y
: =
. ©
- &
D= >
: ©
:O
_ |
_ |
_ |
_ |
|
= _
= _
= _
_ |
O
_m |
I |
N
>
N
=E
< |
N E
5
S
O
O
<C

Alice LAl | Bob [p[|A]|L : Carl PllA][L
Vdefault = aliz rulz" | :

:l prepare request: 1 |
:l prepare request: 1

Vdefault = carl 4vr"

Alice LAl | Bob [p[|A]|L : Carl PllA][L
Vdefault = aliz rulz" | .

:l prepare request: 1 | A | <
:l prepare request: 1

-

Alice LAl | Bob [p||A]|L : Carl PllA][L
Vdefault = aliz rulz" | .

:l prepare request: 1 | A | <
P

prepare request: 2

prepare request: 1
prepare request: 1

prepare request: 2

ResponseToF’mr)areReolme’f[NOHE |

Alice |pja|[L | Bob |P[[A]|L - Carl [p][a]|L
Vdefautt = "allZ rulz’ I : Vdefault = "carl 4vr"

:l prepare request: 1 | Al < prepare request: 2 {ix

:l prepare request: 2 {ix
P prepare request: 2

ResponseToPrepareRequest [None]

prepare request: 1
prepare request: 1

ResponseToPmr)areReolme’f[NOHE |

Alice LAl | Bob [p[|A]|L : Carl PllA][L
Vdefaut = aliz rulz’ | :

:l prepare request: 1
P

prepare request: 1
prepare request: 1

prepare request: 2

- >
ResponseToPrepareRequest] None |

F%esponseToF’mrJareReclna'e’rL WIe |

Alice LAl | Bob [p[|A]|L : Carl PllA][L
Vdefaut = aliz rulz’ | :

:l prepare request: 1
P

prepare request: 1
prepare request: 1

F{esponseToF’mrJareReclJrae’rL WIe |

prepare request: 2

<
ResponseToPrepareRequest] None |

A

P| < ResponseTloPrepareRequest] None |

Alice LAl | Bob [p[|A]|L : Carl PllA][L
Vdefaut = aliz rulz’ | :

:l prepare request: 1
P

prepare request: 1
prepare request: 1

F{esponseToF’mrJareReclJrae’rL WIe |

prepare request: 2

<
ResponseToPrepareRequest] None |

P| < ResponseloPreparer :quest] None | BA

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

ResponseToPrenareReatiest! Noie
L

&

ResponseloPrepare: :quest][None |

ResponseToPrepareRequest] None |

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F{esponseToF’mrJareReclJrae’rL WIe |

&

ResponseloPrepare: :quest][None |

ResponseToPre» «reRequest] None]

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F{esponseToF’mrJareReclJrae’rL WIe |

&

ResponseloPrepare: :quest][None |

ResponseToPre» «reRequest] None]

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

ResponseToPrenareReatiest! Noie
L

&

ResponseloPrepare: :quest][None |

If rx'él a majority,

v = rmax(rx'd Proposals).

ResponseToPre» «reRequest] None]

7]
I' Vdefault

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

&

ResponseloPrepare: :quest][None |

A

AcceptRequest[Proposal[2,"carl 4vr']]

. AcceptRequest| Proposal[2 ‘carl 4vr'] |

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

&

ResponseloPrepare: :quest][None |

A

AcceptRequest[Proposal[2,"carl 4vr']]

. AcceptRequest| Proposal[2 ‘carl 4vr'] |

JAM AcceptRequest[Proposal[2,"carl 4vr']] P

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

&

ResponseToPrepare:

A

squest[None]

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

&

P| < ResponseloPreparer :quest] None | BA :
| I
P |«
| |
| I
| I
| I
A | <€
| I
A |« | i
I L
|

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

&

ResponseToPrepare:

squest] None | WA

Alice [rP]A

L

Vdefault =

&

prepare request: 1

aliz rulz"

:l prepare request: 1

: Carl PlA]lL

prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

ResponseloPrepare: :quest][None |

A

<

/—L

If rx'd a majority,
value = v = "carl 4vr"

If rx'd a majority, :
value = v = "carl 4vr"

Alice

Vdefault =

&

F%esponseToF’mrJareReclJraefL WoIe |

P

A

L

prepare request: 1

aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1

P| < ResponseloPreparer :quest] None | BA :
P | I
< I I
| I
| I
| I
A | <€
| ; '
A< | ' I
| L
| :
| s
| : |
L |«

If rx'd a majority,
value = v = "carl 4vr"

Decision[Proposal[n,v]] |

L
I
If rx'd a majority, I
value = v = "carl 4vr" |
I
I

If rx'd a majority, :
value = v = "carl 4vr"

Alice |r|A L
Vdefault = aliz rulz"

:l prepare request: 1

: Carl P

A

L

prepare request: 1
prepare request: 1

F%esponseToF’mrJareReclJraefL WoIe |

&

P| < ResponseloPreparer :quest] None | BA :
| I
P |«
| |
| I
| I
| I
A | <€
| . |
A< | : I
| L
| :
L | | .

L5

If rx'd a majority,

value = v = "carlF~y"

Decision[Proposal[n,v]] |

L
I
If rx'd a majority, I
value = v = "carl 4vr" |
I
I

If rx'd a majority, :
value = v = "carl 4vr"

Alice

Vdefault =

&

F%esponseToF’mrJareReclJraefL WoIe |

P

A

L

aliz rulz"

:l prepare request: 1

prepare request: 1
prepare request: 1

: Carl P

A

L

If rx'd a majority,

value = v = "carlp

Decision[Proposal[n,v]]

P ResponseloPreparer :quest] None | BA :
| I
P |«
| I
| I
| I
| I
A | <€
| . '
A |< [I
| L

| :

| E
| : '

L |« L
| Decision[Proposal[n,v]] |
(| L

I
Decision[Proposal[n,v]] ITrx'da maj I
value = v = "carf 4vr’ i
I
I

If rx'd a majority, :
value = v = "carl 4vr"

Alice

Vdefault =

&

FIesponseToF’mrJareFIeclJraefL WoIe |

P

A

L

prepare request: 1

aliz rulz"

:l prepare request: 1

: Carl PlA]lL

prepare request: 1

|

If rx'd a majority,

value = v = "carlp

P ResponseloPreparer :quest] None | BA :
P | I
< | |
| I
| I
| I
A | <€
|) l
A< | : i
| L
! . Decision[Proposal[n,v]]
I :
| : |
L |«
Decision[Proposal[n,v]] Decision[Proposal[n,v]]
" Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

("L

ECIE maj
value = v = "car 4vr")

Decision[Proposal[n,v]]

If rx'd a majority, :
value = v = "carl 4vr"

If rx'd a majority,
value = v = "carl 4v

— —— — — —

> |

——

If rx'd a majority

Lovalue = v =eark4ver oo

Alice

Vdefault =

&

FIesponseToF’mrJareFIeclJraefL WoIe |

P

A

L

prepare request: 1
prepare request: 1

aliz rulz" |

:l prepare request: 1

: Carl PlA]lL

P ResponseloPreparer :quest] None | BA :
| I
P |« I
I
| I
| I
| I
A | <€
|) l
A< | : i
| L
L le— I . Decision[Proposal[n,v]]
I :
| : |
L |«
Decision[Proposal[n,v]] Decision[Proposal[n,v]]
" Decision[Proposal[n,v]]

If rx'd a majority,

value = v = "carlp

Decision[Proposal[n,v]]

NAanicinnl Drnr\qsa”r -1

Decision[Proposal[n,v]]

("L

ECIE maj
value = v = "car 4vr")

Decision[Proposal[n,v]]

If rx'd a majority, :
value = v = "carl 4vr"

If rx'd a majority,
value = v = "carl 4v¥

— —— — — —

> |

——

If rx'd a majority

Lovalue = v =eark4ver oo

Alice LAl | Bob [r][AflL
Vdefault = aliz rulz"

:l prepare request: 1
P

: Carl PlA]lL

prepare request: 1
prepare request: 1

F{esponseToF’mrJareReclJrae’rL WIe |

P| < ResponseloPrepare: :quest][None |
P |«
A< E
L le— E Decision[Proposal[n,v]] Decision[Proposal[n,v]]
I : I :
L [« ; L
Decision[Proposal[n,v]] Decision[Proposal[n,v]] : o
If rx'd a majority, T : If rx'd a majority,
" ecision[Proposal[n,v]]

value = v = "carlp

value = v = "carl 4vr":

‘ L
HEGE maj
value = v = "car 4vr") :

If rx'd a majority, : /'\
value = v = "carl 4v#" ;
| .

jority, . If rX'd a majority, :
‘carl 4vr' '— — - — — —m — — — — — oValE = M= AR AV e

> |

NAanicinnl Drnr\qsa”r -1

Decision[Proposal[n,v]] s

If rx'd a m@
vallle — v

Outline

* [he Algorithm
 Example: how it works initially
 Example: how it handles conflicts

, Example: how it works after consensus

Alice

L

A

P

Alice

Alice [rPlA|fL
Proposal[2,"carl 4vr']

Bob Tel[allL]
Proposal[2,"carl 4vr"]

Vdefault:=o-allZ £UIZ/&

‘Bob Tel[allc] ~ T T T
| Proposal[2,"carl 4vr"]

prepare request: 9

Bob [rl[allL]
Proposal[2,"carl 4vr"]

> A

prepare request: 9

prepare request: 9

prepare request: 9

Bob [rl[allL]
Proposal[2,"carl 4vr"]

> A

prepare request: 9

A

>

rB(_)b_ [PTTAllL]
| Proposal[2,"carl 4vr"]

prepare request: 9 | »| A

prepare request: 9
P prepare request: 9 A

>
<

ResponseToPrepareRequest[None]

rB(_)b_ [PTTAllL]
| Proposal[2,"carl 4vr"]

prepare request: 9 | »| A

prepare request: 9
P prepare request: 9 A

>
<

ResponseToPrepareRequest[N e]

prepare request: 9

prepare request: 9

=A@ prepare request: 9

A

>
<

ResponseToPrepareRequest| Mw00.l

Proposal[2,"carl 4vr']

=A@ prepare request: 9

prepare request: 9

prepare request: 9

Bob [r|lA|lL
Proposal[2,"carl 4vr"]
> A

A

<

>

ResponseToPrepareRequest] Mol

Proposal[2,"carl 4vr"]

ResponseTloPrepareRequest] None | A

=A@ prepare request: 9

prepare request: 9

prepare request: 9

Bob [r||AllL
Proposal[2,"carl 4vr"]
> A

A

<

>

ResponseToPrepareRequest] Mol

Proposal[2,"carl 4vr"]

ResponseTloPrepareRequest] None | A

ResponseToPrepareRequest] None | A

=A@ prepare request: 9

prepare request: 9

prepare request: 9

Bob [r||AllL
Proposal[2,"carl 4vr"]
> A

A

<

>

ResponseToPrepareRequest] Mol

Proposal[2,"carl 4vr"]

ResponseTloPrepareRequest] Nc 1e | A

ResponseToPrepareRequest] Nc e | JEA

prepare request: 9

prepare request: 9

=N crepare request: 9 N
>

<

ResponseToPrepareRequest] Mol
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr']

ResponseTloPrepareRequest|[' .2, i

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

prepare request: 9

I

prepare request: 9 I
P prepare request: 9 A |
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr']

ResponseTloPrepareRequest|[' .2, i

Proposal[2,"carl 4vr"]

P | < ResponseTloPrepareRequesi| i\t € | :

If rx'd a majority,
v = max(rx'd Proposals).v or Vdetaurt

prepare request: 9

prepare request: 9

=N crepare request: 9 N
>

<

ResponseToPrepareRequest] Mol
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr']

ResponseTloPrepareRequest|[' .2, o)

Proposal[
ResponseToPrepareRequest| Nt e |

2,"carl 4vr"]

Bob [pllallL]
Proposal[2,"carl 4vr"]

prepare request: 9

prepare request: 9

> A

=N crepare request: 9 N
>

<

ResponseToPrepareRequest] Mol
Proposal[2,"carl 4vr']

P |« ResponseTloPrepareRequest| .

Proposal[2,"carl 4vr"]
s arar e)

Of Vdefault

| AcceptRequest][Proposal[9,"aliz rulz"]]

| AcceptRequest][Proposal[9,"aliz rulz"]]

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | AT

prepare request: 9

prepare request: 9

Bob [pllallL]
Proposal[2,"carl 4vr"]

> A

=A@ prepare request: 9

A

>

<

ResponseToPrepareRequest] Mol
Proposal[2,"carl 4vr']

ResponseTloPrepareRequest| .

Proposal[2,"carl 4vr"]
s arar e)

or Vde

ault

| AcceptRequest[Proposal[9, "carl 4vr* |

| AcceptRequest[Proposal[9," "carl 4vr"

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

prepare request: 9

prepare request: 9

=N crepare request: 9 N
>

<

ResponseToPrepareRequest] Mol
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr']

ResponseTloPrepareRequest|[' .2, i

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, "carl 4vr* |

| AcceptRequest[Proposal[9," "carl 4vr"

AcceptRequest[Proposal[9,"aliz rulz"]] A\

prepare request: 9

prepare request: 9

=N crepare request: 9 N
>

<

ResponseToPrepareRequest] Mol
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr']

ResponseTloPrepareRequest|[' .2, i

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, "carl 4vr* |

| AcceptRequest[Proposal[9," "carl 4vr"

AcceptRequest[Proposal[9, carl 4vr' . | iy

prepare request: 9

prepare request: 9
=A@ prepare request: 9 i N

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

Proposal[2,"carl 4vr"]
ResponseTloPrepareRequest|[' .2, i

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, ‘carl 4vr* | >| A
| AcceptRequest[Proposal[9," "carl 4vr" > | A
AcceptRequest[Proposal[9, carl 4vr' . | iy Decision[Proposal[n,v]] L

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

prepare request: 9

prepare request: 9
=A@ prepare request: 9 i N

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

Proposal[2,"carl 4vr"]
ResponseTloPrepareRequest|[' .2, i

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, ‘carl 4vr* | >| A
| AcceptRequest[Proposal[9," "carl 4vr" > | A
AcceptRequest[Proposal[9, carl 4vr' . | iy Decision[Proposal[n,v]] L

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

prepare request: 9

I

prepare request: 9 |
P prepare request: 9 A I
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr"
ResponseTloPrepareRequest| 7772, - :

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, "carl 4vr* |

| AcceptRequest[Proposal[9," "carl 4vr"

AcceptRequest[Proposal[9, carl 4vr' . | iy

Decision[Proposal[n,v]] L

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

prepare request: 9

I

prepare request: 9 |
P prepare request: 9 A I
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr"
ResponseTloPrepareRequest| 7772, - :

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, "carl 4vr* |

| AcceptRequest[Proposal[9," "carl 4vr"

AcceptRequest[Proposal[9, carl 4vr' . | iy

Decision[Proposal[n,v]] L

Decision[Proposal[n,v]]

Decision[Proposal[n,v]]

o)

Decision[Proposal[n,v]]
If rx'd a majqti
value = v = W

prepare request: 9

I

prepare request: 9 |
P prepare request: 9 A I
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr"
ResponseTloPrepareRequest| 7772, - :

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, "carl 4vr* |

| AcceptRequest[Proposal[9," "carl 4vr" > | A
AcceptRequest[Proposal[9, carl 4vr' . | iy Decision[Proposal[n,v]] L
Decision[Proposal[n,v]] Decision[Proposal[n,v]] —|
I
/_\ L |« L
Decision[Proposal[n,v]]

If rx'd a majority,
value = v =

‘carl 4vr"

If rx'd a majqti

prepare request: 9

I

prepare request: 9 I
P prepare request: 9 A |
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr"
ResponseTloPrepareRequest| 7772, - :

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, ‘carl 4vr* | > A
| AcceptRequest[Proposal[9," "carl 4vr" > | A
AcceptRequest[Proposal[9, carl 4vr' . | iy Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

) E 0 N\
Decision[Proposal[n,v] ! : If rx'd a majority, :

4

Decision[Proposal[n,v]] value = v =

‘carl 4vr"

If rx'd a majQti

L

I

{ |
If rx'd a majqei |
value=v=W I
I

I

prepare request: 9

I

prepare request: 9 I
P prepare request: 9 A |
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr"
ResponseTloPrepareRequest| 7772, - :

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, ‘carl 4vr* | > A
| AcceptRequest[Proposal[9," "carl 4vr" > | A
AcceptRequest[Proposal[9, carl 4vr' . | iy Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

L E 07 N\
Decision[Proposal[n,v]] : :If rx'd a majority, :

4

Decision[Proposal[n,v]]

;value =V = SIS

If rx'd a majQti

L

I

{ |
If rx'd a majqei |
value=v=W I
I

I

A

prepare request: 9

I

prepare request: 9 |
P prepare request: 9 A I
I

>
<

ResponseToPrepareRequest| Mw00.l
Proposal[2,"carl 4vr']

N . e e] e e -

Proposal[2,"carl

vr"
ResponseTloPrepareRequest| 7772, - :

Proposal[2,"carl 4vr"]
ResponseToPrepareRequest| Nt e | :

Of Vdefault

| AcceptRequest[Proposal[9, ‘carl 4vr* | > A
| AcceptRequest[Proposal[9," "carl 4vr" > | A
AcceptRequest[Proposal[9, carl 4vr' . | iy Decision[Proposal[n,v]] L

Decision[Proposal[n,v]] Decision[Proposal[n,v]]

s E 17 N
: :If rx'd a majority, :

Decision[Proposal[n,v]]

;value =V = SIS

|f rlx'd a majw :
value =v =" | :
| { L |
I If rx'd a majW< | 5 Decision[Proposal[n,v]]
P value = v = | ;
|
| .

Decision[Proposal[n,v]]

prepare request: 9

prepare request: 9

A

prepare request: 9

>
<

ResponseToPrepareRequest[N:
Proposal[2,"carl 4vr"]

ResponseTloPrepareRequest| .

N . e e] e e -

Proposal[2,"carl
s - |

vr']

Proposal[2,' Carl 4vr']

ResponseToPrepareRequesq NC e |

If rx'd a maj
value = v =

o

I
I
I
I
VvV = Or Vdefault |
| AcceptRequest[Proposal[9, "carl 4vr* | > A |
| AcceptRequest[Proposal[9," "carl 4vr" : I > | A
. | :
‘E AcceptRequest[Proposal[9,; ‘carl 4v* . | iy Decision[Proposal[n,v]] L E |
: |
Decision[Proposal[n,v]] Decision[Proposal[n,v]] . | —»| |
: I
L -

élf rx'd a majority,
value = v =

4

Decision[Proposal[n,v]]

‘carl 4vr"

I
] :
; '
If rx'd a maj | Decision[Proposal[n,v]]
value = v = |

Hmdamm
value = v =

or|t§

Decision[Proposal[n,v]]

rx'd a maj
value = v =

m%,

prepare request: 9

prepare request: 9

A

prepare request: 9

>
<

ResponseToPrepareRequest[N:
Proposal[2,"carl 4vr"]

ResponseTloPrepareRequest| .

N . e e] e e -

Proposal[2,"carl
s - |

vr']

Proposal[2,' Carl 4vr']

ResponseToPrepareRequesq NC e |

If rx'd a maj
value = v =

o

I
I
I
I
VvV = Or Vdefault |
| AcceptRequest[Proposal[9, "carl 4vr* | > A |
| AcceptRequest[Proposal[9," "carl 4vr" : I > | A
. | :
‘E AcceptRequest[Proposal[9,; ‘carl 4v* . | iy Decision[Proposal[n,v]] L E |
: |
Decision[Proposal[n,v]] Decision[Proposal[n,v]] . | —»| |
: I
L -

élf rx'd a majority,
value = v =

4

Decision[Proposal[n,v]]

‘carl 4vr"

I
] :
; '
If rx'd a maj | Decision[Proposal[n,v]]
value = v = |

Hmdamm
value = v =

or|t§

Decision[Proposal[n,v]]

rx'd a maj
value = v =

ority,
W Decision[Proposal[n,v]]

prepare request: 9

prepare request: 9

A

prepare request: 9

>
<

ResponseToPrepareRequest[N:
Proposal[2,"carl 4vr"]

ResponseTloPrepareRequest| .

N . e e] e e -

Proposal[2,"carl
s - |

vr']

Proposal[2,' Carl 4vr']

ResponseToPrepareRequesq NC e |

If rx'd a maj
value = v =

o

I
I
I
I
VvV = Or Vdefault |
| AcceptRequest[Proposal[9, "carl 4vr* | > A |
| AcceptRequest[Proposal[9," "carl 4vr" : I > | A
. | :
‘E AcceptRequest[Proposal[9,; ‘carl 4v* . | iy Decision[Proposal[n,v]] L E |
: |
Decision[Proposal[n,v]] Decision[Proposal[n,v]] . | —»| |
: I
L -

élf rx'd a majority,
value = v =

4

Decision[Proposal[n,v]]

‘carl 4vr"

Hmdamm
value = v =

or|t§

I
L »
{ '

If rx'd a maj | Decision[Proposal[n,v]]
value = v = | :
rx'd a majority, Decision[Proposal[n,v]] .
value = v = W Decision[Proposal[n,v]] I L)
—_ o e e — — — — SN Hrx'd-a m.aj@.r.it.

Outline

he Algorithm
Example: how it works initially
Example: how it handles conflicts

Example: how it works after consensus

THE END

