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Average communication
• Symbol 0 is free, 1,...,S each consume one unit of 

communication

• E.g., the decoder interprets not transmitting 
data as “0”

• Definition:  Encoder has average communication 
not exceeding γmax if for any {sk} it may send,

• Example:  {0,0,0,0,1,1,1,1,1,1,...} not exceeding 1

• Example:  {0,1,1,0,1,1,0,1,1,...} not exceeding 2/3

1

N �M + 1

NX

k=M

Isk 6=0

 �
max

+O

✓
1

N �M

◆
8N � M � 0

E.g.   γmax = average energy per tx
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caveat: very different encoders!
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lower bnd on bit-rate
 penalty factor r/rminObservation 2:  For fixed γ, pick small S 

Observation 1:  γ=S/(S+1) is “just as good” as γ=1
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Observation 3:  Can make #nf/sec arbitrarily small
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Average rate of nonfrees per second: �/T

Observation 3b:  Can make #nf/sec arbitrarily small

(at the cost of requiring a precise clock...)

Discussion

Example: 3 nfs/sec, T=1/6

0

1 sec

1 1 10 0
✓
6

3

◆
sequences, bits/seclog2

✓
6

3

◆

T
)

Thursday, October 24, 13



log2

✓
12

3

◆

Average rate of nonfrees per second: �/T

Observation 3b:  Can make #nf/sec arbitrarily small

(at the cost of requiring a precise clock...)
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Event-based Encoding
• “Emulation-based” controller:

•  

• (Assume A-BK is Hurwitz)

• “Event-based” encoder/decoder pair

     0 : absence of an event

C

D

u(t) := Kx(t) stabilizes original process

P

E
sk

x(kT ),

k 2 N
x̂(t)

u(t) := Kx̂(t)
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Event-based Encoding
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ẋ(t) = Ax(t) +Bu(t)

dynamics˙̂
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copy of 
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Event-based Encoding
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x̂(T ) = x̂(T )� +R(1)
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Event-based Results

If r and A satisfy

then an emulation-based controller and event-based 
encoder/decoder pair exist with bit-rate r which bound x(t)

r ln 2 �
X

i:<�i[A]�0

�i[A]

L�L 0 LeaT

e(T )
Case 1:
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Event-based Results

If r and A satisfy

then an emulation-based controller and event-based 
encoder/decoder pair exist with bit-rate r which bound x(t)

r ln 2 �
X

i:<�i[A]�0

�i[A]

L�L 0 LeaT

e(T )

(encoder will have γ=1)

Case 1:
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Event-based Results

L�L 0 LeaT

e(T )
Case 2:

If r, γmax, and A satisfy

r
h�1(�

max

)

ln 3
ln 2 �

X

i:<�i[A]�0

�i[A] h(x) :=
1

1 + 1
x

ln 2
e

x�1

then an emulation-based controller and event-
based encoder/decoder pair exist with bit-rate r 
and with ave. comm. <= γmax which bound x(t)

new
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Event-based Results
Compare the two lower bounds on bit-rate penalty factor

r

r
min

� 1

f(�
max

, S)

r

rmin
� 1

h�1(�
max

)
ln 3

r
h�1(�

max

)

ln 3
ln 2 �

X

i:<�i[A]�0

�i[A]

event-based:

nec/suff:
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Event-based Results
Compare the two lower bounds on bit-rate penalty factor

r

r
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)
ln 3

r
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)
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event-based:

nec/suff:

ratio: how 
conservative is 
event-based?

Thursday, October 24, 13
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Event-based encoder has a bit-rate <2.3x that of any 
other bounding encoder with ave comm γmax

f(�
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max

)

ln 3

⌘

1.74

0.128

Event-based Results

2.3

0.04

f(�
max

, 1)⇣
h�1

(�
max

)

ln 3

⌘ S=1 (most efficient)

S=2 (“fair” comparison)
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Conclusion

• Control a linear system under bit-rate & 
communication constraints

• Nec/suff condition for a bounding enc/dec

• Easily-implemented event-based enc/dec 
within 2.3x of lowest possible bit-rate
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Event-based Results
If r, γ, and A satisfy

r
h�1(�

max

)

ln 3
ln 2 �

X

i:<�i[A]�0

�i[A]

h(x) :=
1

1 + 1
x

ln 2
e

x�1

then an emulation-based controller and event-based 
encoder/decoder pair exist with bit-rate r and with 

ave. comm <= γ which bound x(t)

new
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ln 3

L�L 0 LeaT

e(T )
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Example

• S=1 (bits)

• (animated example?)

• N=5 (show codewords?) 

• Show M-of-N encoders?

• show example of {0,1}, T=0.1 versus 
{0,...,64000}, T=1 which have the same bit-
rate but the bigger alphabet is not better.
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Event-based enc/dec

• The enc has n “sub-encoders” which send 
one of {-1,0,1} every Ti sec if |xi| > Li, with

Ti :=
h�1(�

max

)

�i[A]

Li := sup
z2X0

|zi|,

L1

L2

X0
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Event-based enc/dec
At each timestep ti,k :

= Tik with i 2 {1, . . . , n}, k 2 N, the ith sub-encoder

sends symbol si,k 2 {�1, 0, 1} according to

si,k =

8
><

>:

�1 ei(Tik) < �Li

0 ei(Tik) 2 [�Li, Li]

1 ei(Tik) > Li

, i 2 {1, . . . , n}, k 2 N. (1)

This concludes the description of the encoder. Unlike the encoder, the de-

coder does not have access to x(t), so it cannot compute the estimation error

e(t). It has access to only its own internal state estimate x̂(t), the received

symbols si,k, and each sub-encoder’s Ti and Li. At timestep ti,k :

= Tik, the

decoder receives symbol si,k and at that time it and the encoder each update

the ith component of their state estimates x̂i(Tik) as

x̂i(Tik) = x̂i(Tik)
�
+Ri(si,k), i 2 {1, . . . n}, k 2 N, (2)

where for each dimension i, the decoding function Ri : A ! R is defined as

Ri(s) :=

8
><

>:

�Li
2

(1 + exp(h

�1

(�

max

))) s = �1

0 s = 0

Li
2

(1 + exp(h

�1

(�

max

))) s = 1.

(3)
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(N,M,S) Encoders

• Introduce (N,M,S) encoders

• Show that any S-library encoder is (N,M,S) 
for some N,M

• Show that L(N,N gam,S) --> H(X)
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