

Minimum Energy Encoding for Networked Control Systems

Justin Pearson
Advisor: Joao Hespanha
UCSB

25th Southern California Control Workshop
Oct 25, 2013

Outline

- Prior work
- Problem setup
- Necessary & Sufficient main result
- Event-based encoding

Outline

- **Prior work**
- Problem setup
- Necessary & Sufficient main result
- Event-based encoding

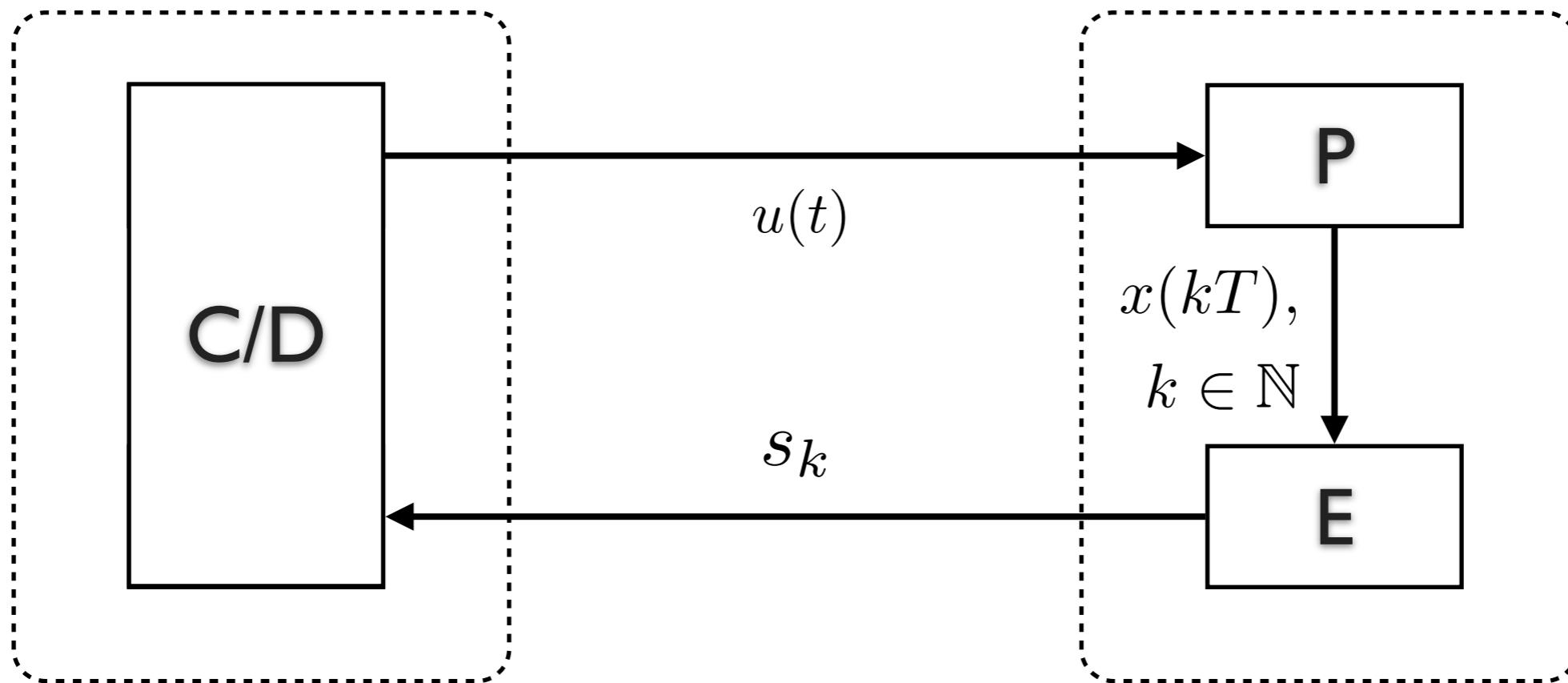
Prior work

- Linear system

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m, \quad x(0) \in \mathcal{X}_0 \subset \mathbb{R}^n \text{ bdd}$$

- Encoder/Decoder with alphabet \mathcal{A} , sampling period T

$$s_k \in \mathcal{A} := \{0, \dots, S\}, \quad k \in \mathbb{N}, \quad r := \frac{\log_2(S + 1)}{T}$$



Prior work

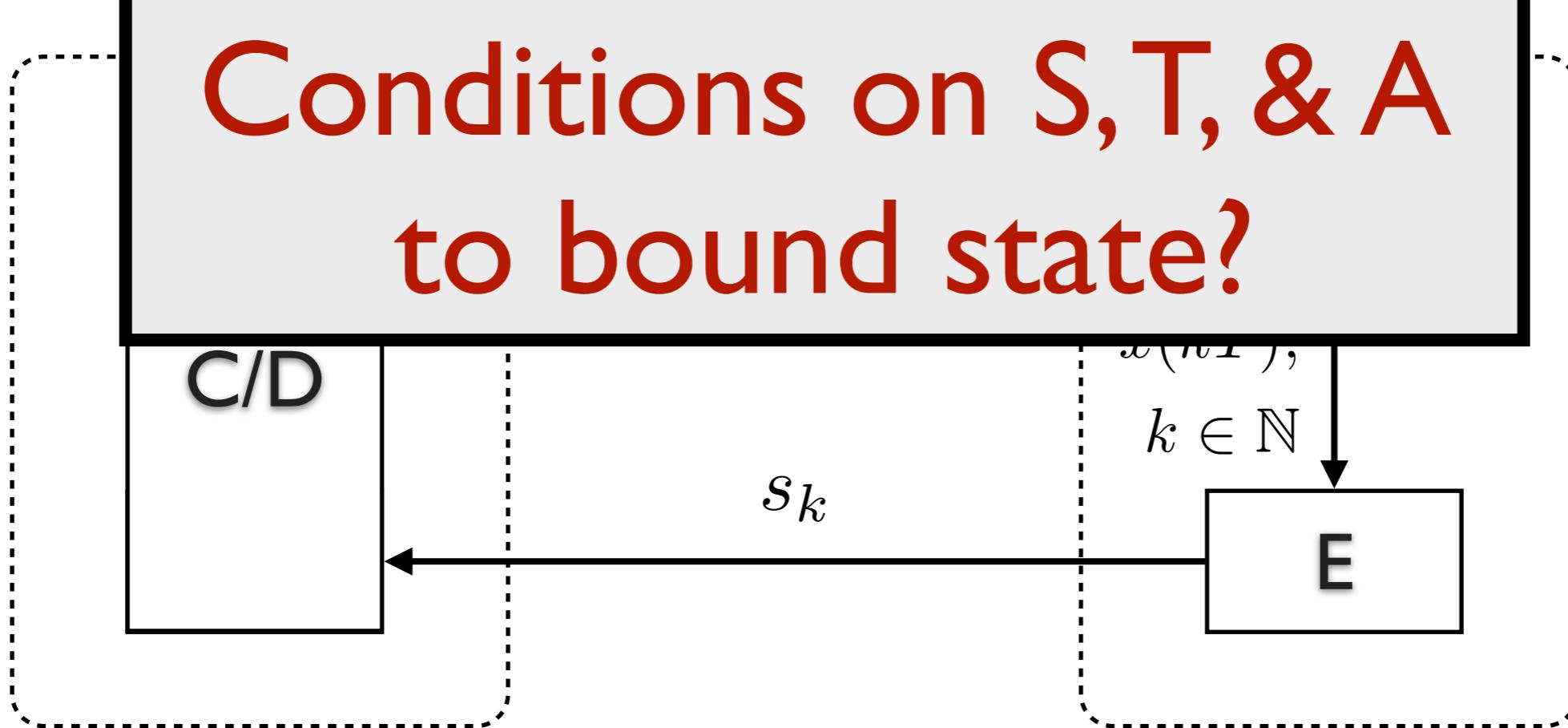
- Linear system

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m, \quad x(0) \in \mathcal{X}_0 \subset \mathbb{R}^n \text{ bdd}$$

- Encoder/Decoder with alphabet \mathcal{A} , sampling period T

$$s_k \in \mathcal{A} := \{0, \dots, S\}, \quad k \in \mathbb{N}, \quad r := \frac{\log_2(S + 1)}{T}$$

Conditions on $S, T, \& A$
to bound state?



Prior work

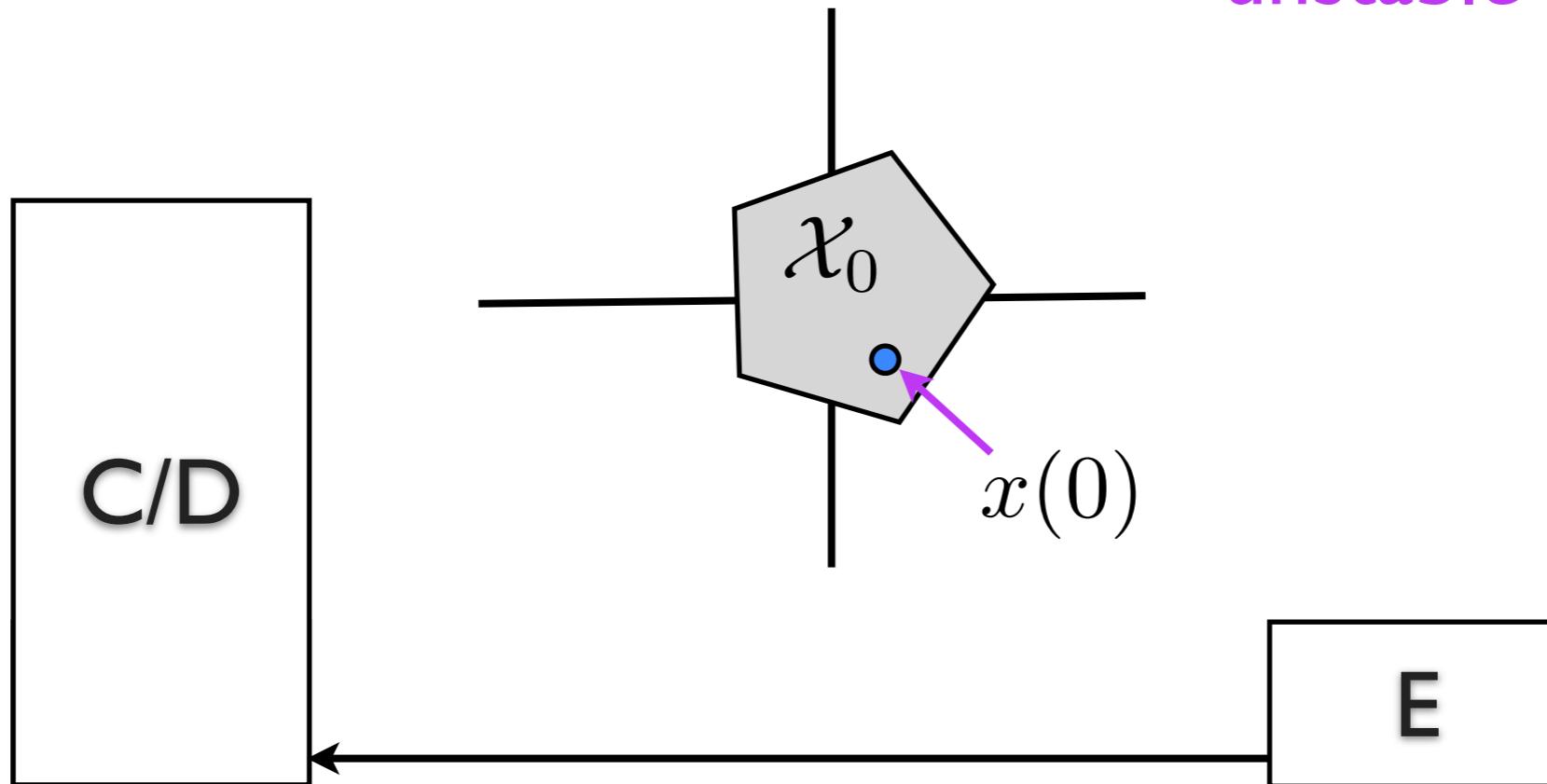
- Channel Capacity with Free Symbols
 - Verdu 1990
- Control under Communication Constraints
 - Brocket/Liberzon 1998
 - Tatikonda/Mitter 2000
 - Nair/Evans 2000
 - Hespanha/Ortega/Vasudevan 2002
 - Li/Baillieul 2005
- Event-based Control
 - Astrom/Bernhardsson 2002
 - Tabuada 2006

Prior work

bit-rate

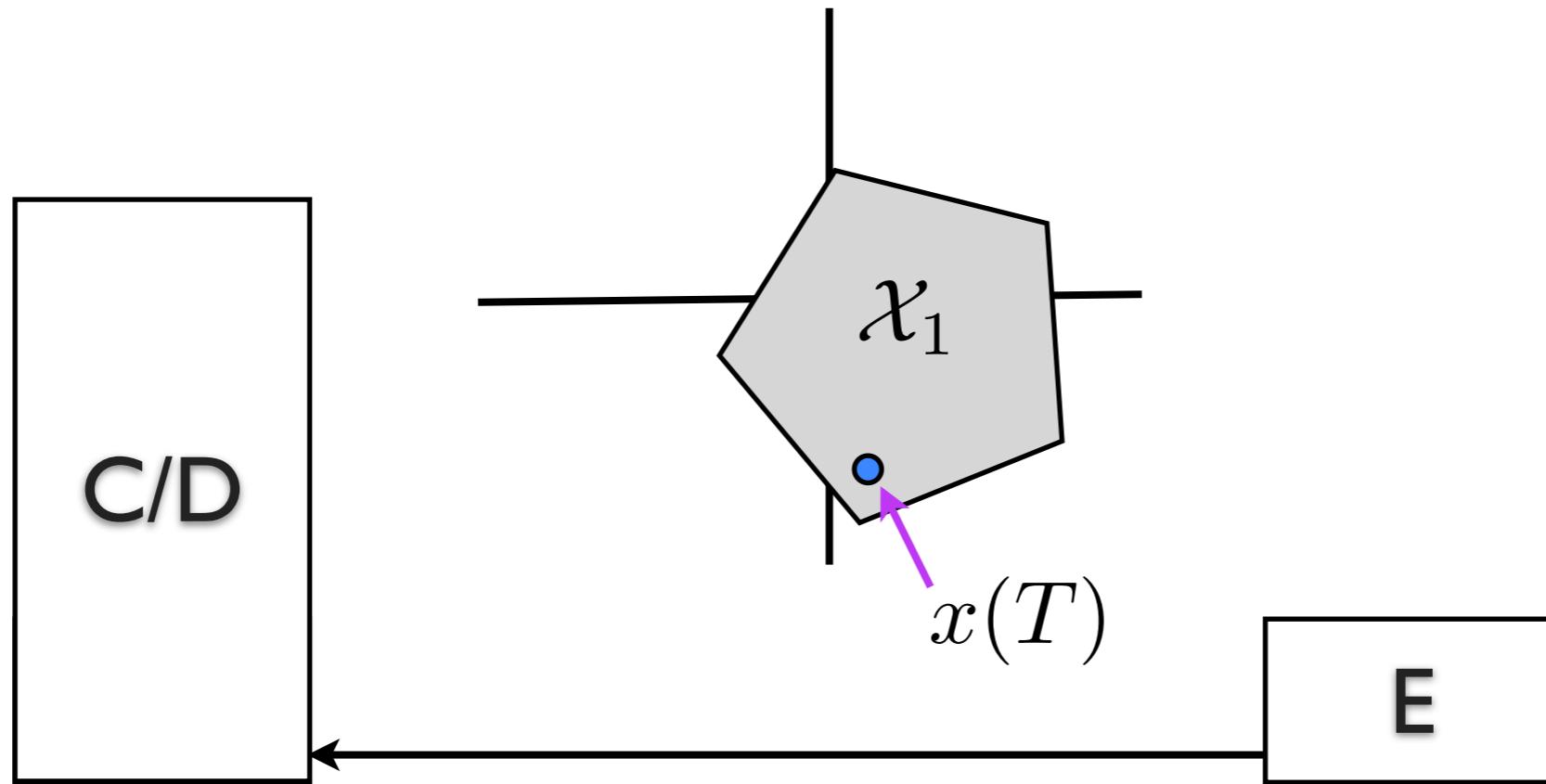
unstable evals

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



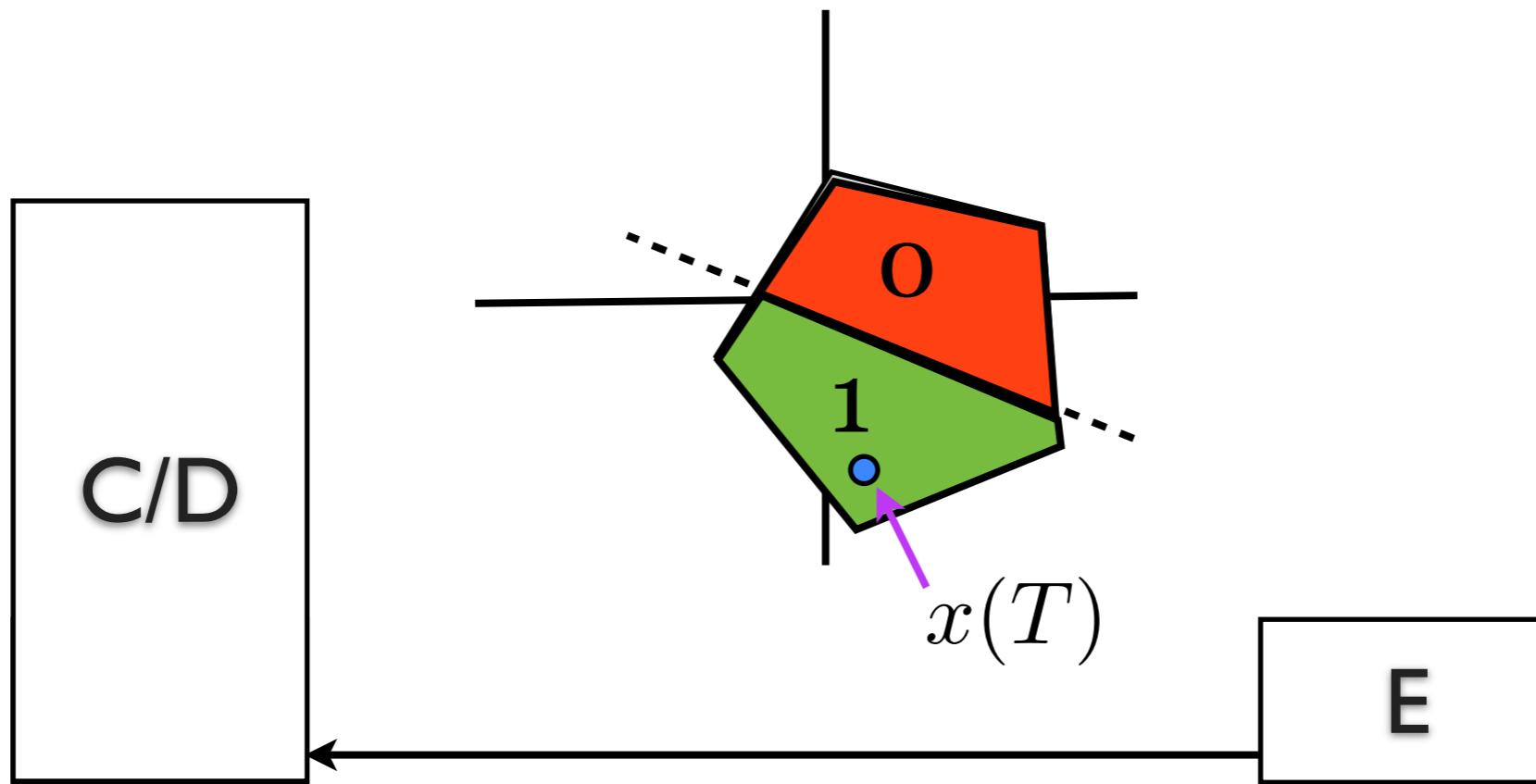
Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



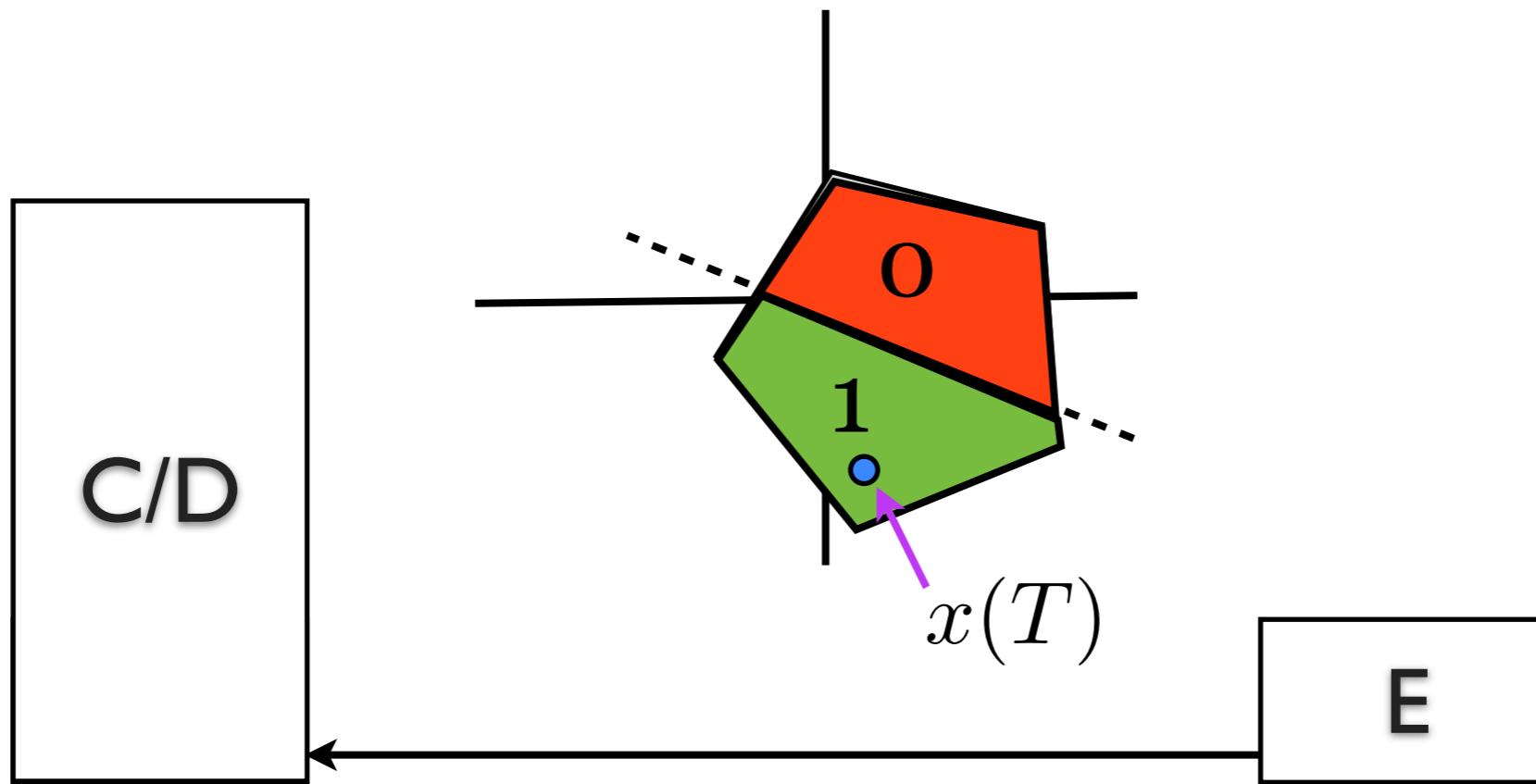
Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



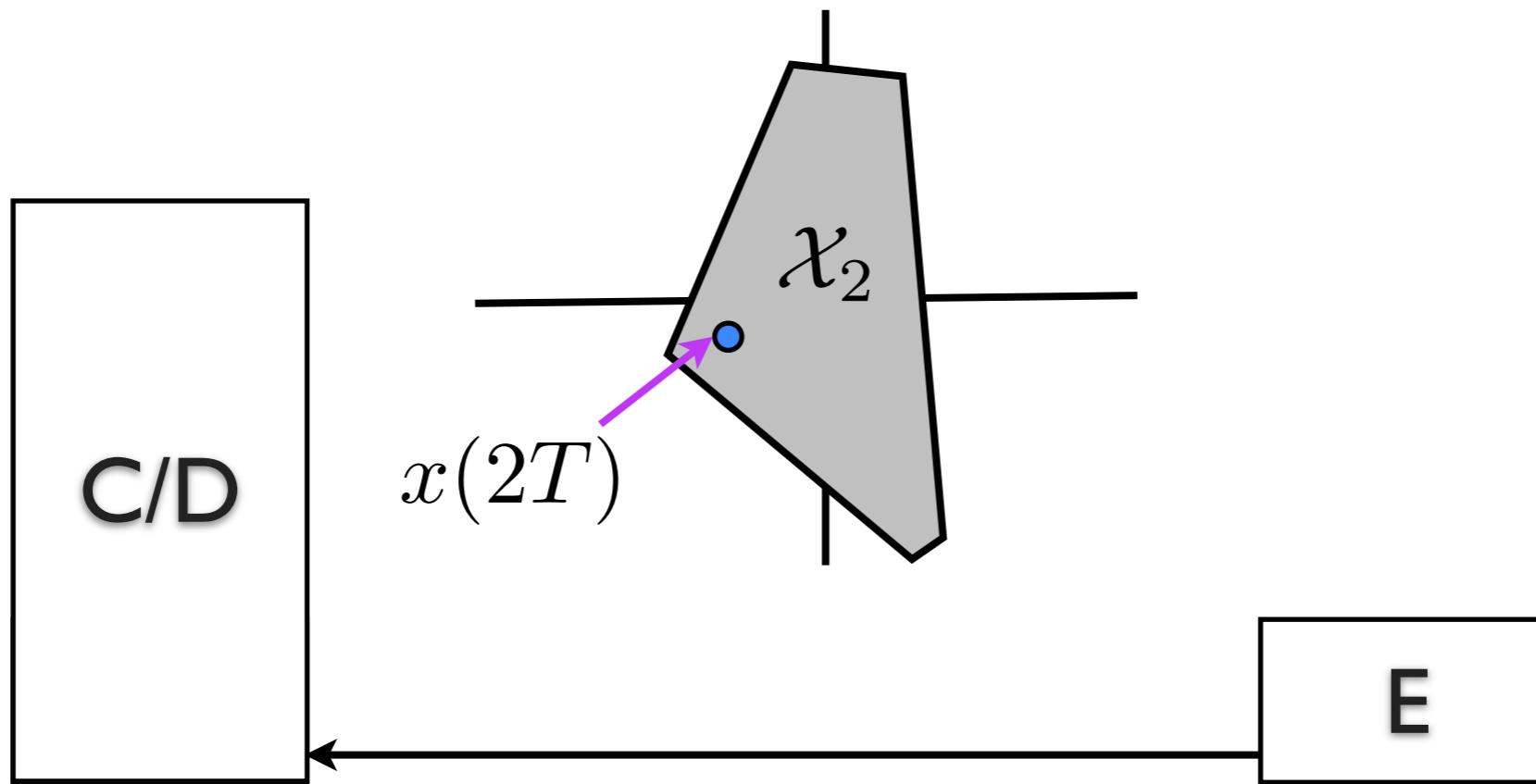
Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



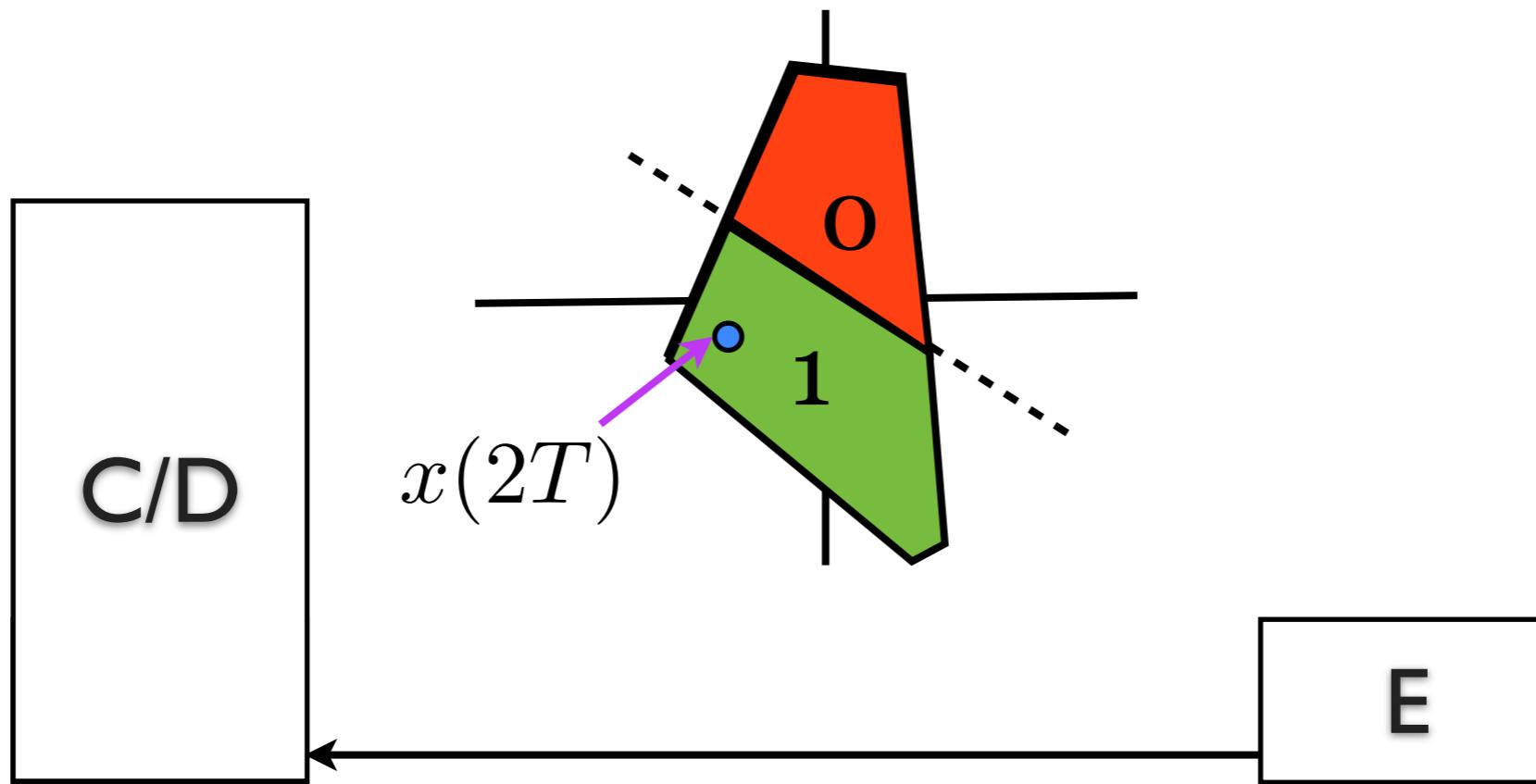
Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



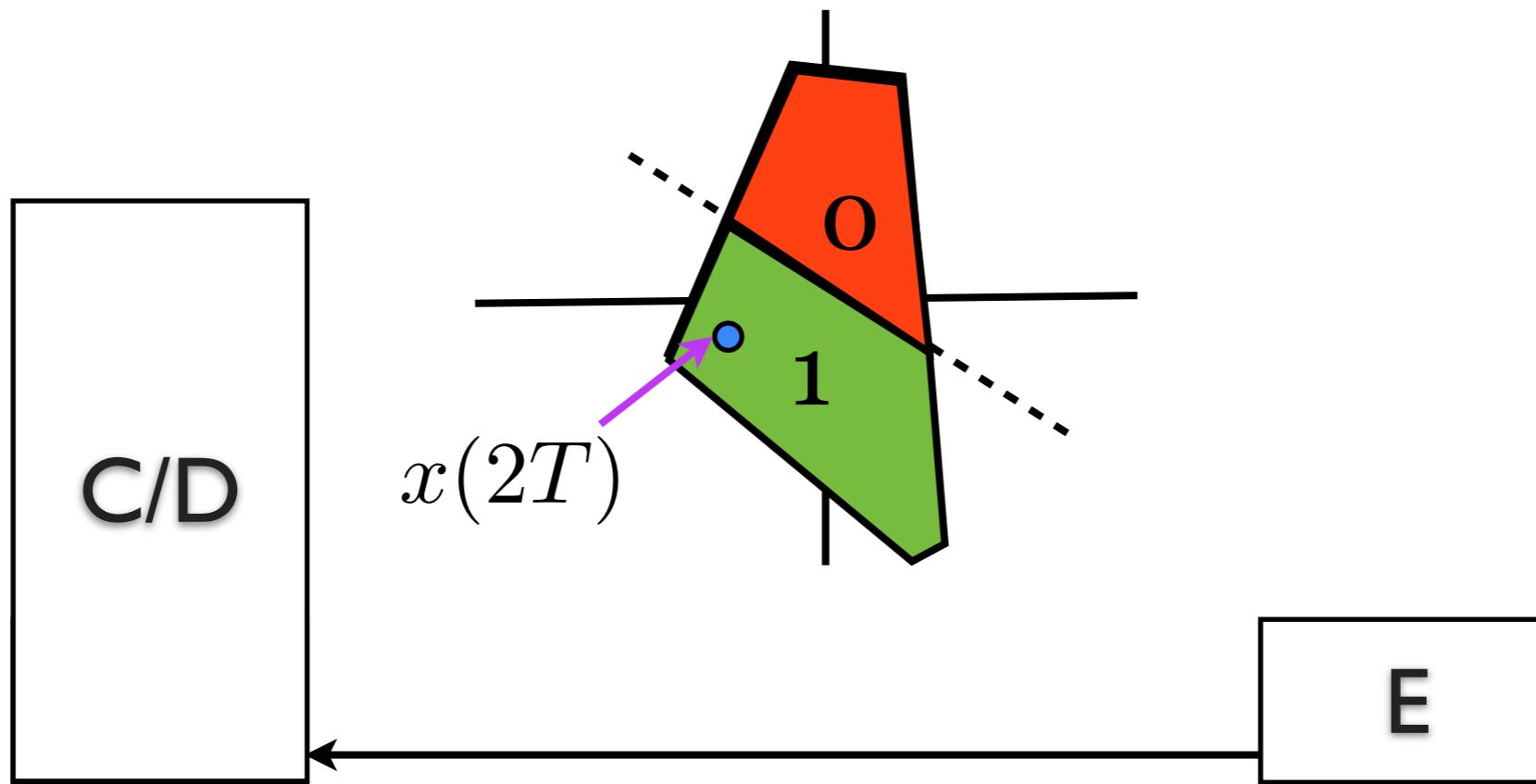
Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



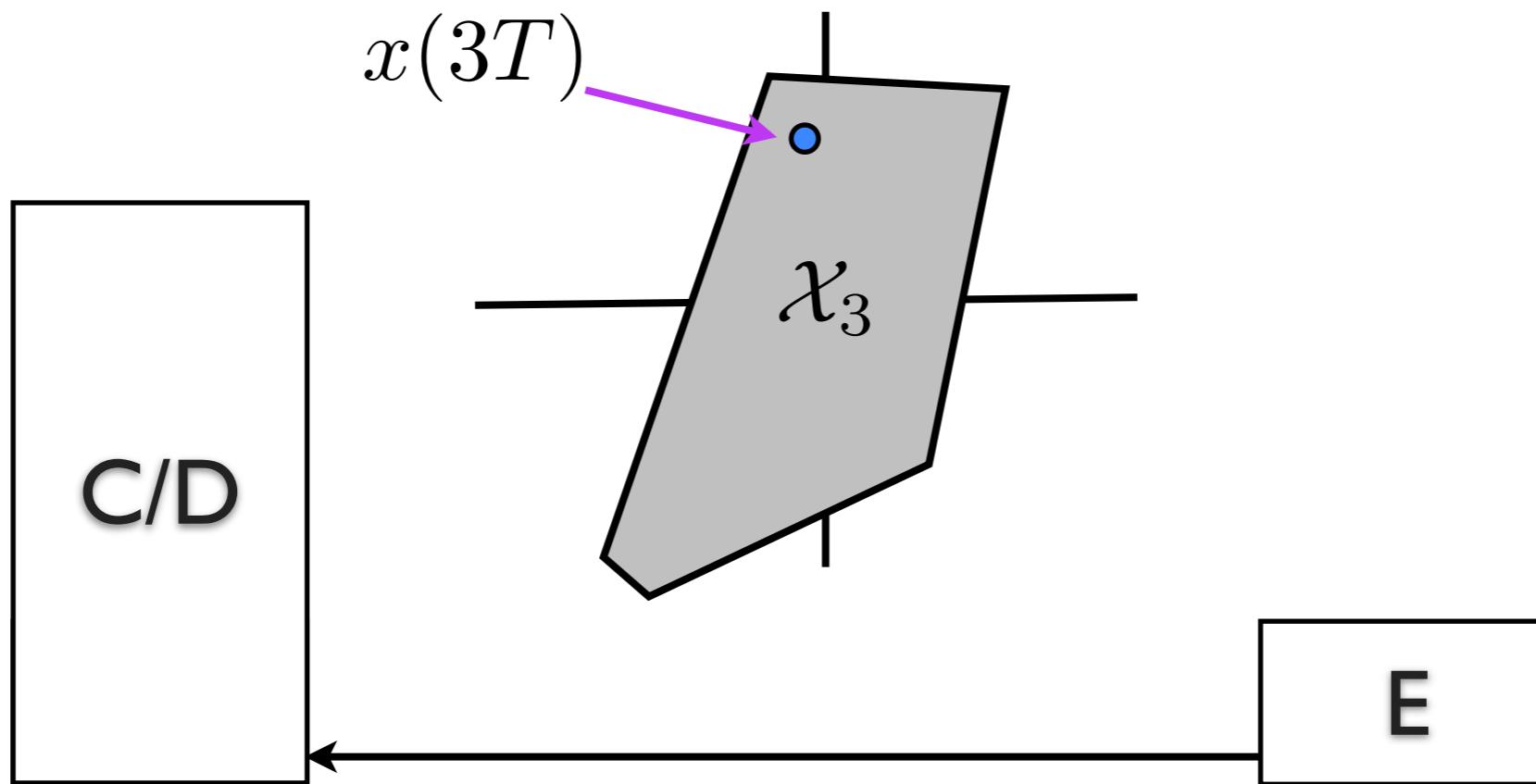
Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$



Prior work

$$r \ln 2 > \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

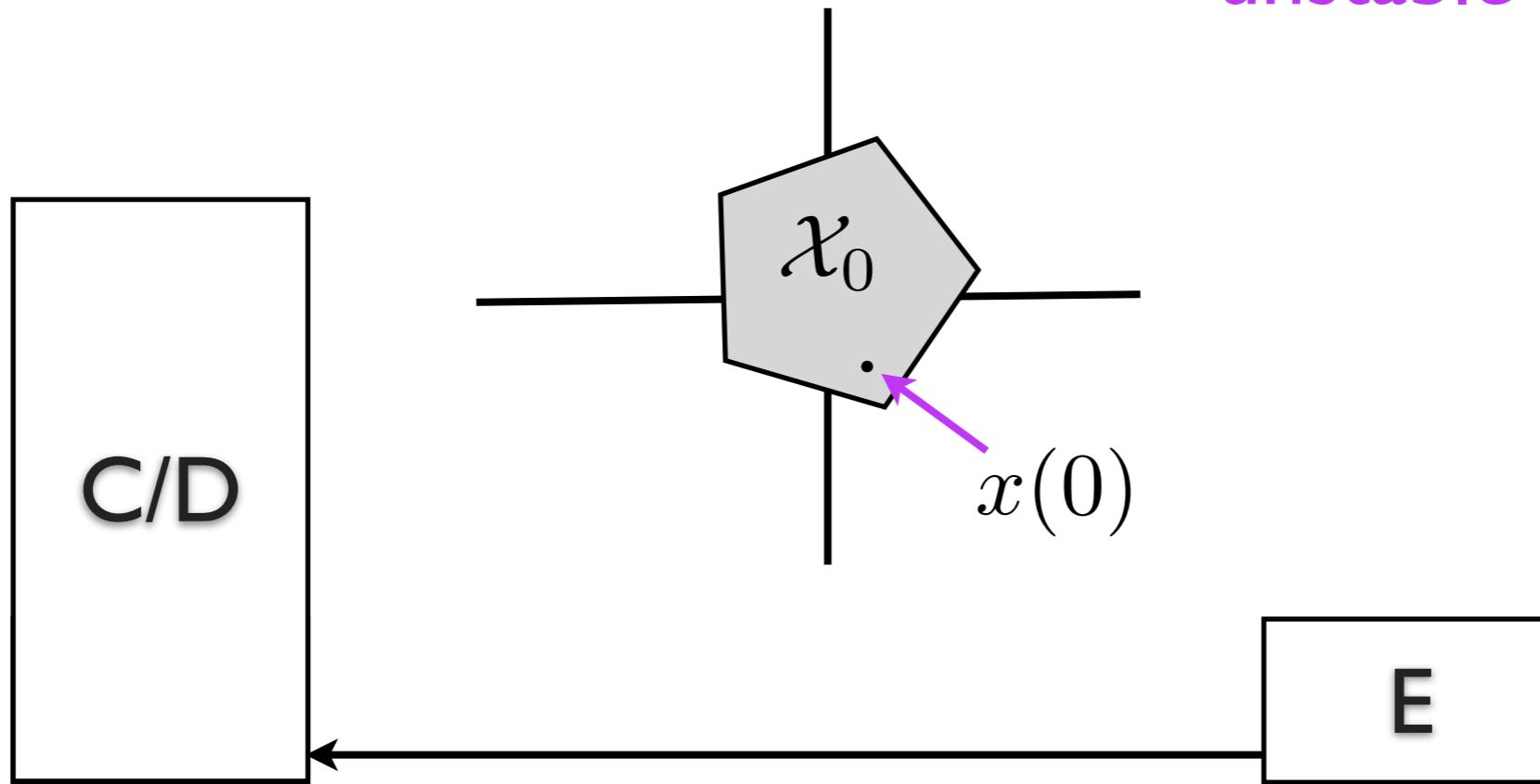


Prior work

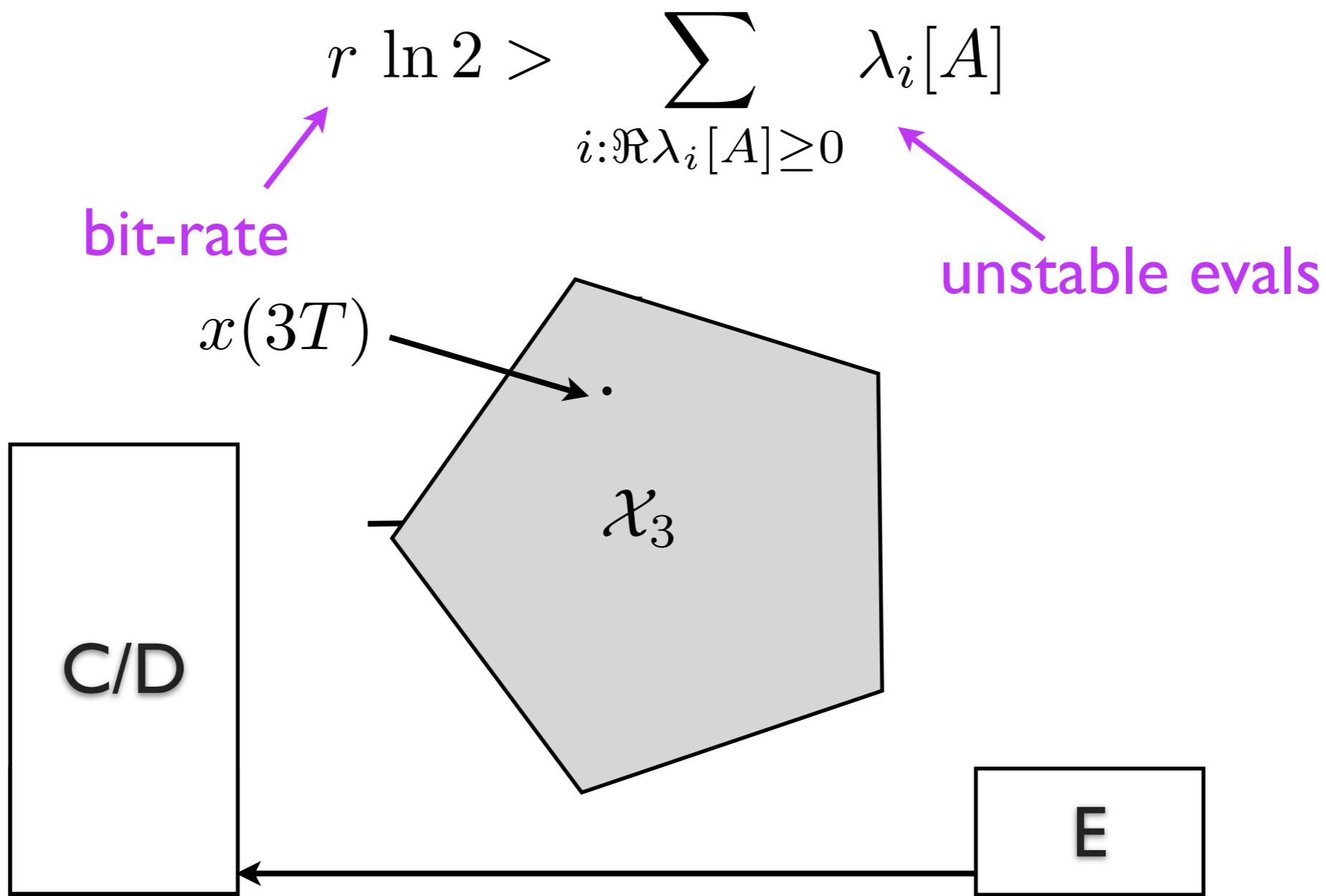
bit-rate

unstable evals

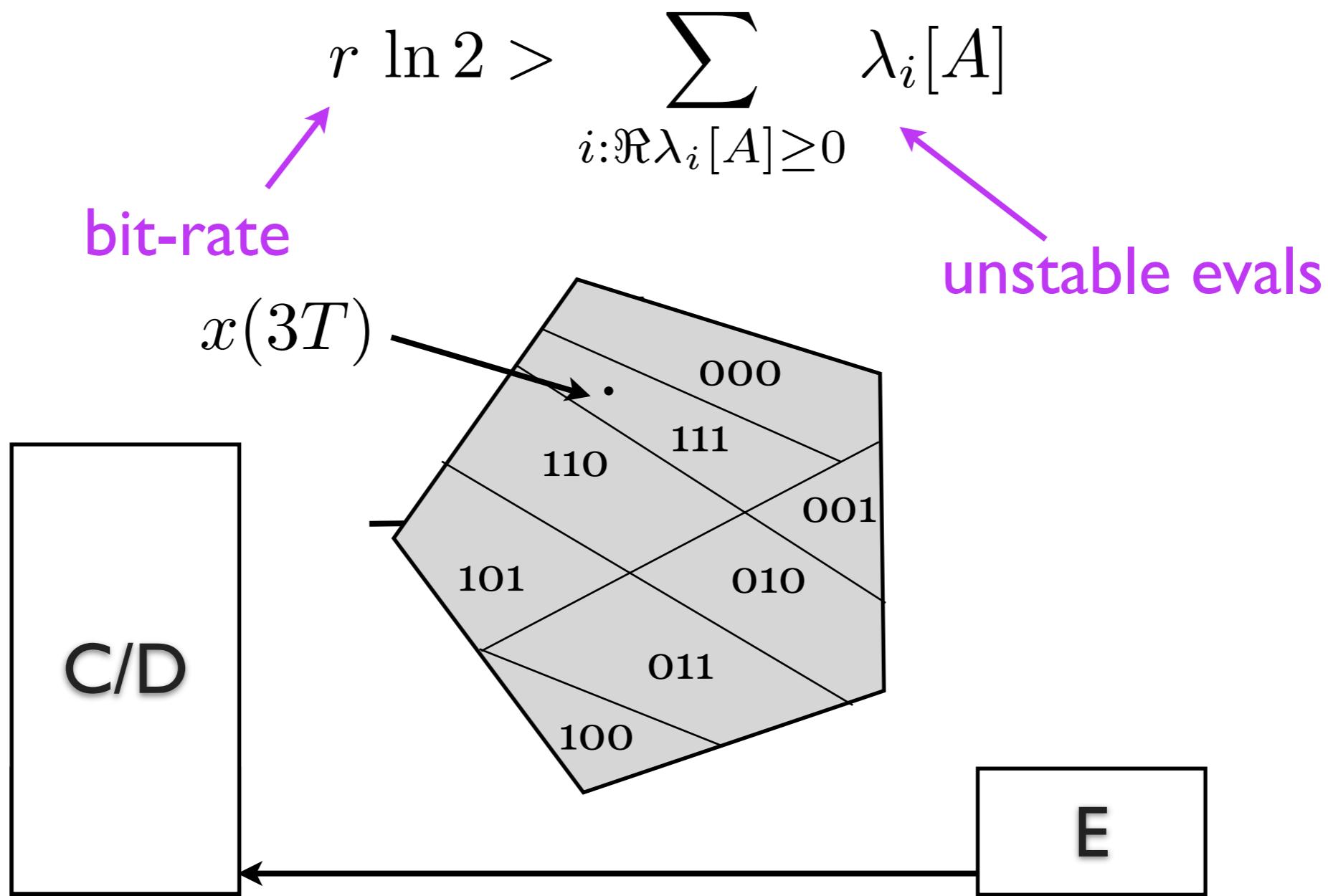
C/D



Prior work

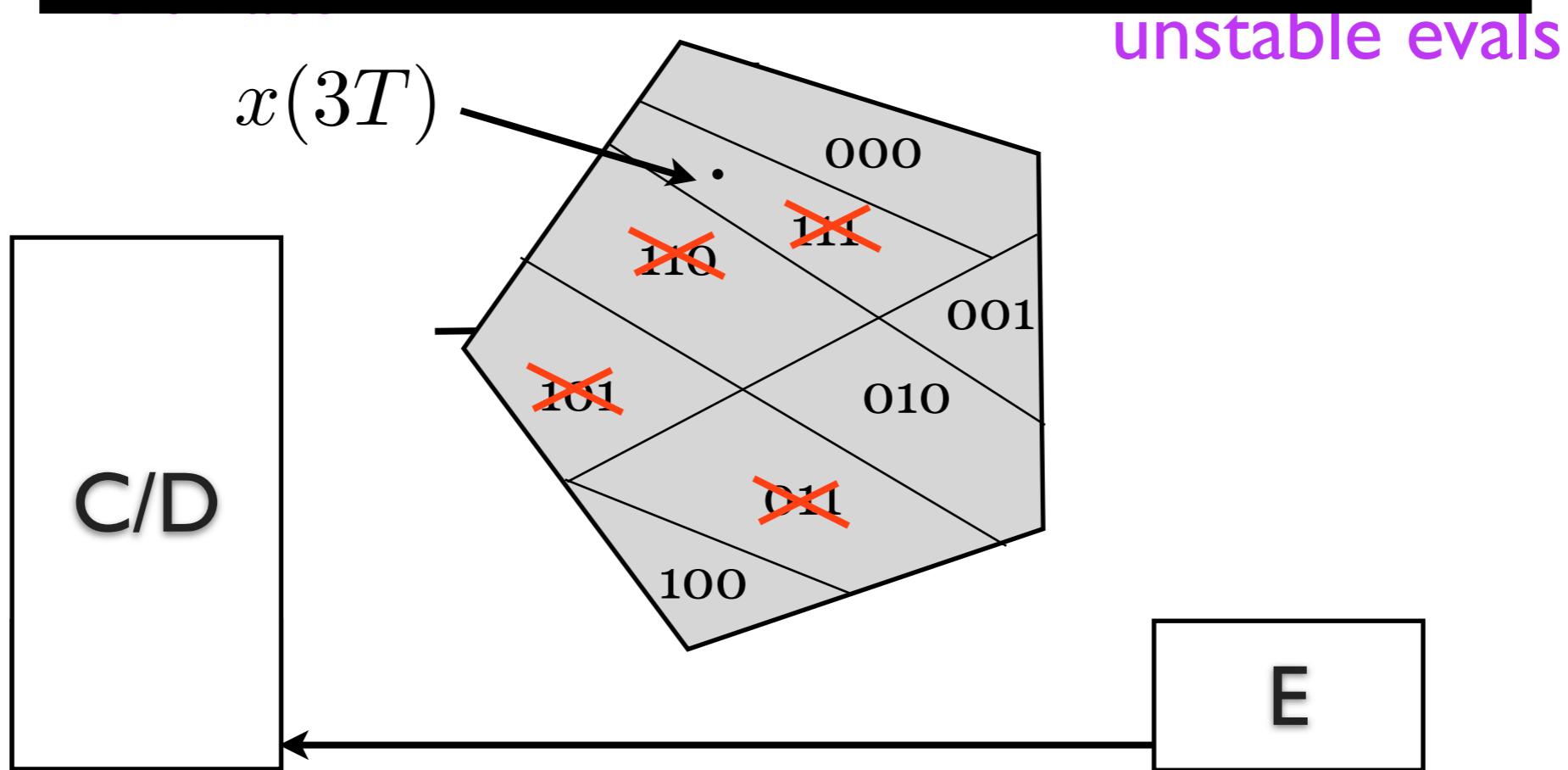


Prior work



Prior work

What if you can't send arbitrary strings?



Outline

- Prior work
- **Problem setup**
- Necessary & Sufficient main result
- Event-based encoding

Average communication

- Symbol 0 is free, 1,...,S each consume one unit of communication
 - E.g., the decoder interprets *not transmitting data* as “0”
- Definition: Encoder has *average communication not exceeding γ_{\max}* if for any $\{s_k\}$ it may send,

E.g. γ_{\max} = average energy per tx

$$\frac{1}{N - M + 1} \sum_{k=M}^N I_{s_k \neq 0} \leq \gamma_{\max} + O\left(\frac{1}{N - M}\right) \quad \forall N \geq M \geq 0$$

- Example: {0,0,0,0,1,1,1,1,1,...} not exceeding 1
- Example: {0,1,1,0,1,1,0,1,1,...} not exceeding 2/3

Average communication

- Symbol 0 is free, 1,...,S each consume one unit of communication
 - E.g., the decoder interprets *not transmitting data* as “0”
- Definition: Encoder has *average communication not exceeding γ_{\max}* if for any $\{s_k\}$ it may send,

$$\frac{1}{N - M + 1} \sum_{k=M}^N I_{s_k \neq 0} \leq \gamma_{\max} + O\left(\frac{1}{N - M}\right) \quad \forall N \geq M \geq 0$$

- Example: {0,0,0,0,1,1,1,1,1,...} not exceeding 1
- Example: {0,1,1,0,1,1,0,1,1,...} not exceeding 2/3

short-term ave: 1

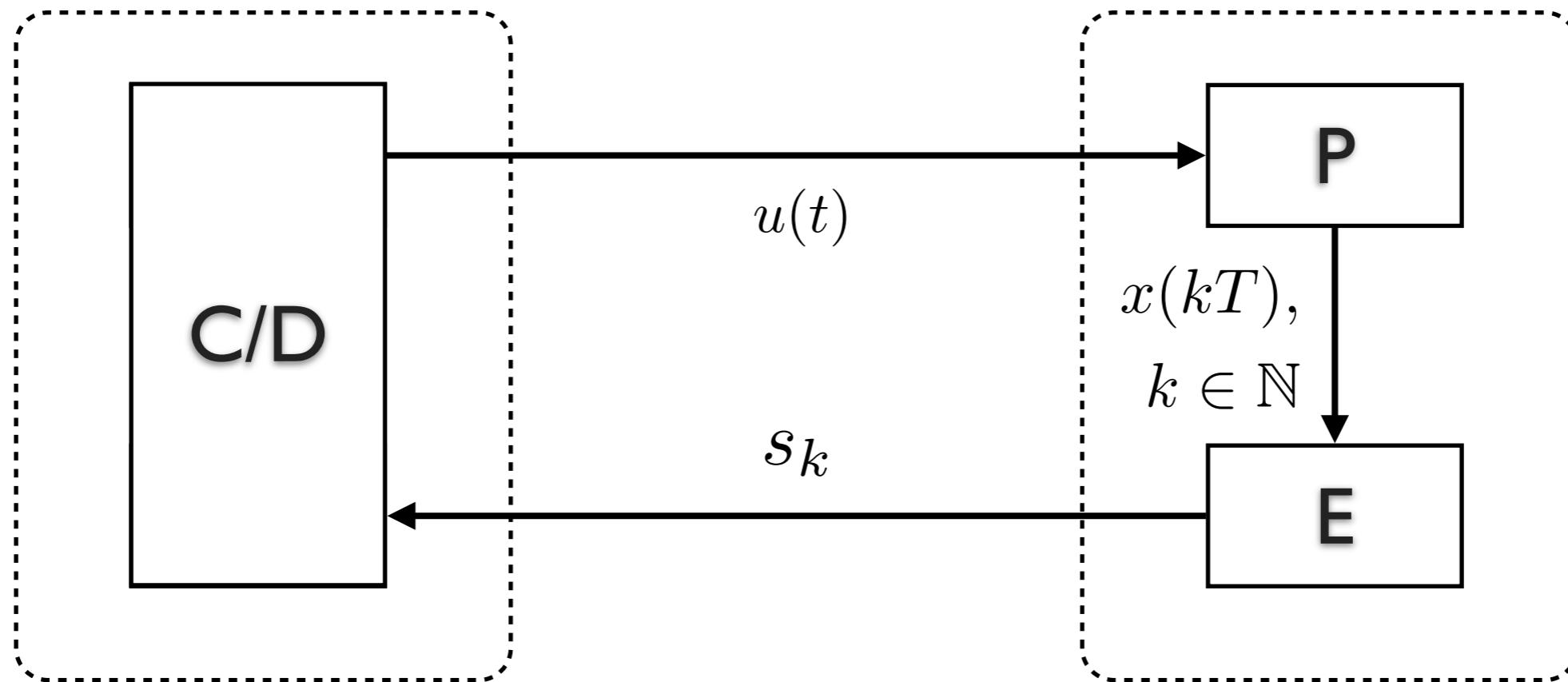
Problem Setup

- Linear system

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m, \quad x(0) \in \mathcal{X}_0 \subset \mathbb{R}^n \text{ bdd}$$

- Encoder/Decoder with \mathcal{A} , T , and ave. comm. $\leq \gamma$

$$s_k \in \mathcal{A} := \{0, \dots, S\}, \quad k \in \mathbb{N}, \quad r := \frac{\log_2(S + 1)}{T}$$



Problem Setup

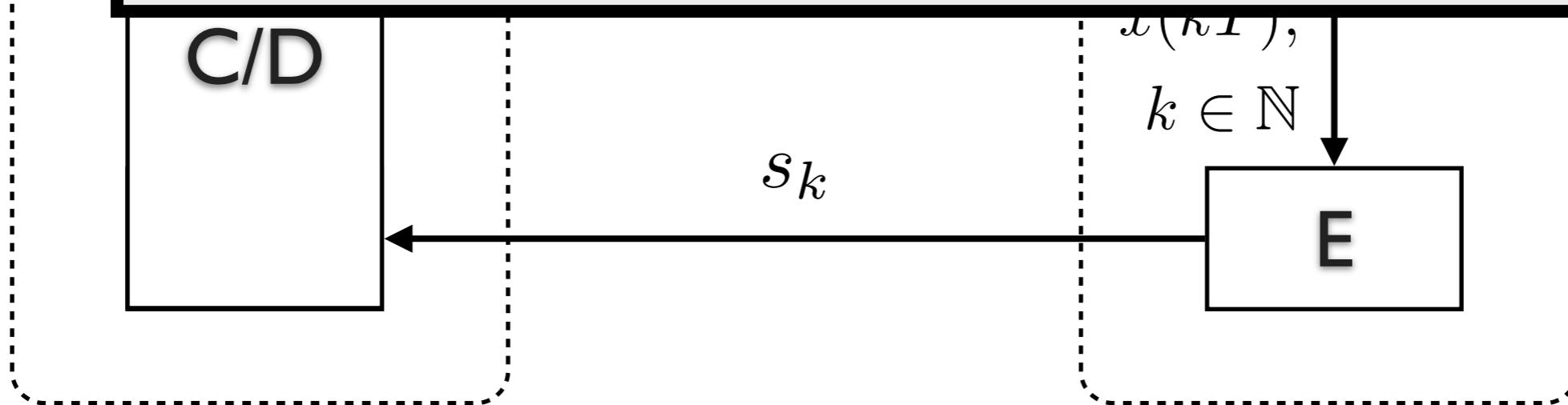
- Linear system

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, u \in \mathbb{R}^m, \quad x(0) \in \mathcal{X}_0 \subset \mathbb{R}^n \text{ bdd}$$

- Encoder/Decoder with \mathcal{A} , T , and ave. comm. $\leq \gamma$

$$s_k \in \mathcal{A} := \{0, \dots, S\}, \quad k \in \mathbb{N}, \quad r := \frac{\log_2(S + 1)}{T}$$

Conditions on S, T, γ , & A
to bound state?



Outline

- Prior work
- Problem setup
- **Necessary & Sufficient main result**
- Event-based encoding

Main result

A necessary & sufficient condition on S, T, γ_{\max} ,
and A for a bounding encoder/decoder is

$$r \overset{\text{new}}{f}(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

average
energy per tx

Main result

A necessary & sufficient condition on S, T, γ_{\max} , and A for a bounding encoder/decoder is

$$r \overset{\text{new}}{f}(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

bit-rate

$$r := \frac{\log_2(S + 1)}{T}$$

average
energy per tx

Main result

A necessary & sufficient condition on S, T, γ_{\max} , and A for a bounding encoder/decoder is

$$r f(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

bit-rate $r := \frac{\log_2(S+1)}{T}$

penalty function $f(\gamma, S) := \begin{cases} \frac{H(\gamma) + \gamma \log_2 S}{\log_2(S+1)} & 0 \leq \gamma \leq \frac{S}{S+1} \\ 1 & \frac{S}{S+1} < \gamma \leq 1 \end{cases}$

average energy per tx γ

Main result

A necessary & sufficient condition on S, T, γ_{\max} , and A for a bounding encoder/decoder is

$$r f(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

bit-rate $r := \frac{\log_2(S + 1)}{T}$

penalty function

$$f(\gamma, S) := \begin{cases} \frac{H(\gamma) + \gamma \log_2 S}{\log_2(S+1)} & 0 \leq \gamma \leq \frac{S}{S+1} \\ 1 & \frac{S}{S+1} < \gamma \leq 1 \end{cases}$$

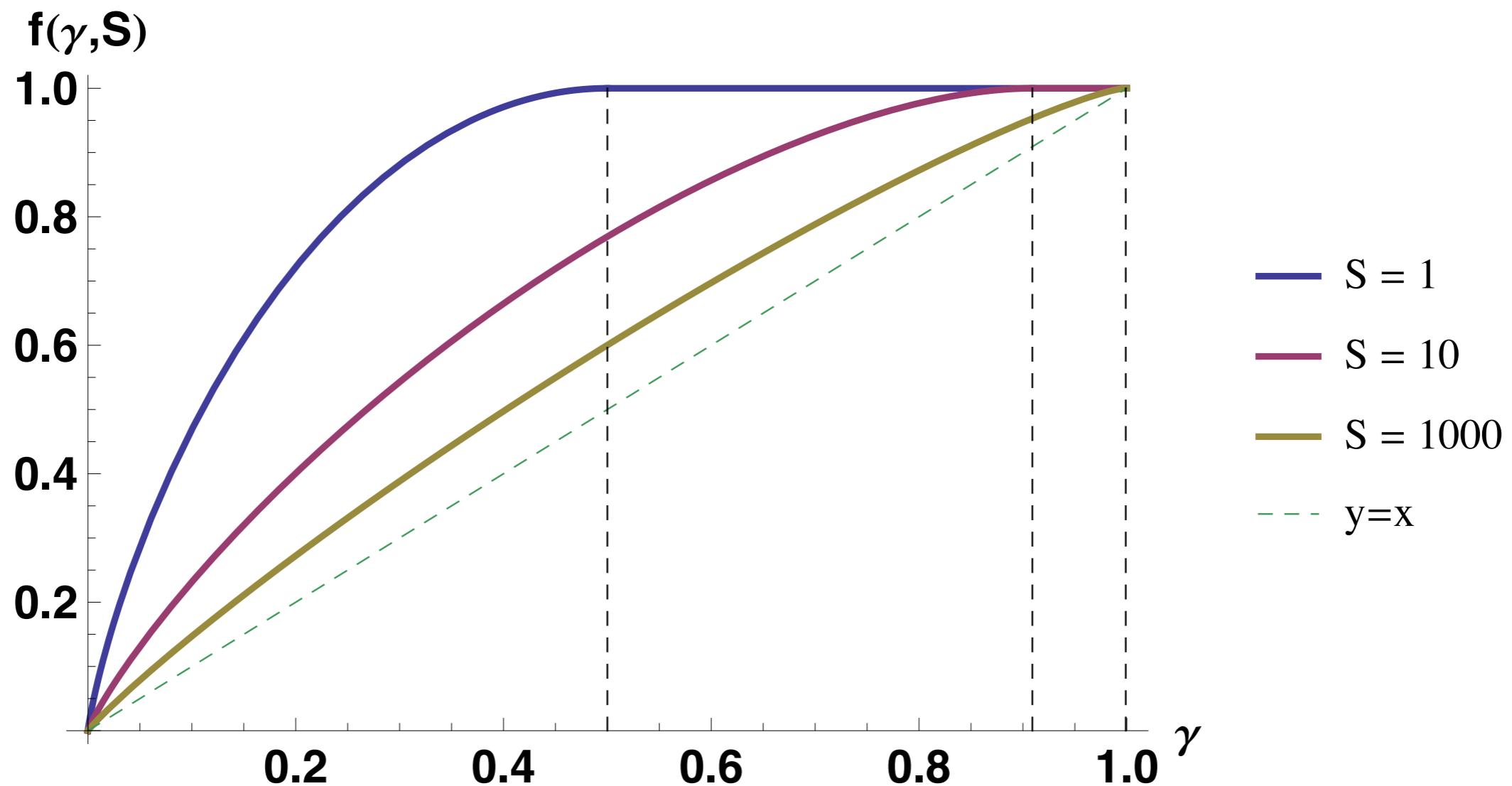
base-2 entropy $H(p) := -p \log_2(p) - (1 - p) \log_2(1 - p)$

average energy per tx

Penalty function

average
energy per tx

$$f(\gamma, S) := \begin{cases} \frac{H(\gamma) + \gamma \log_2 S}{\log_2(S+1)} & 0 \leq \gamma \leq \frac{S}{S+1} \\ 1 & \frac{S}{S+1} < \gamma \leq 1 \end{cases}$$



Discussion

A necessary & sufficient condition on S, T, γ_{\max} , and A for a bounding encoder/decoder is

$$r f(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

average
energy per tx

$$r_{\min} := \frac{1}{\ln 2} \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

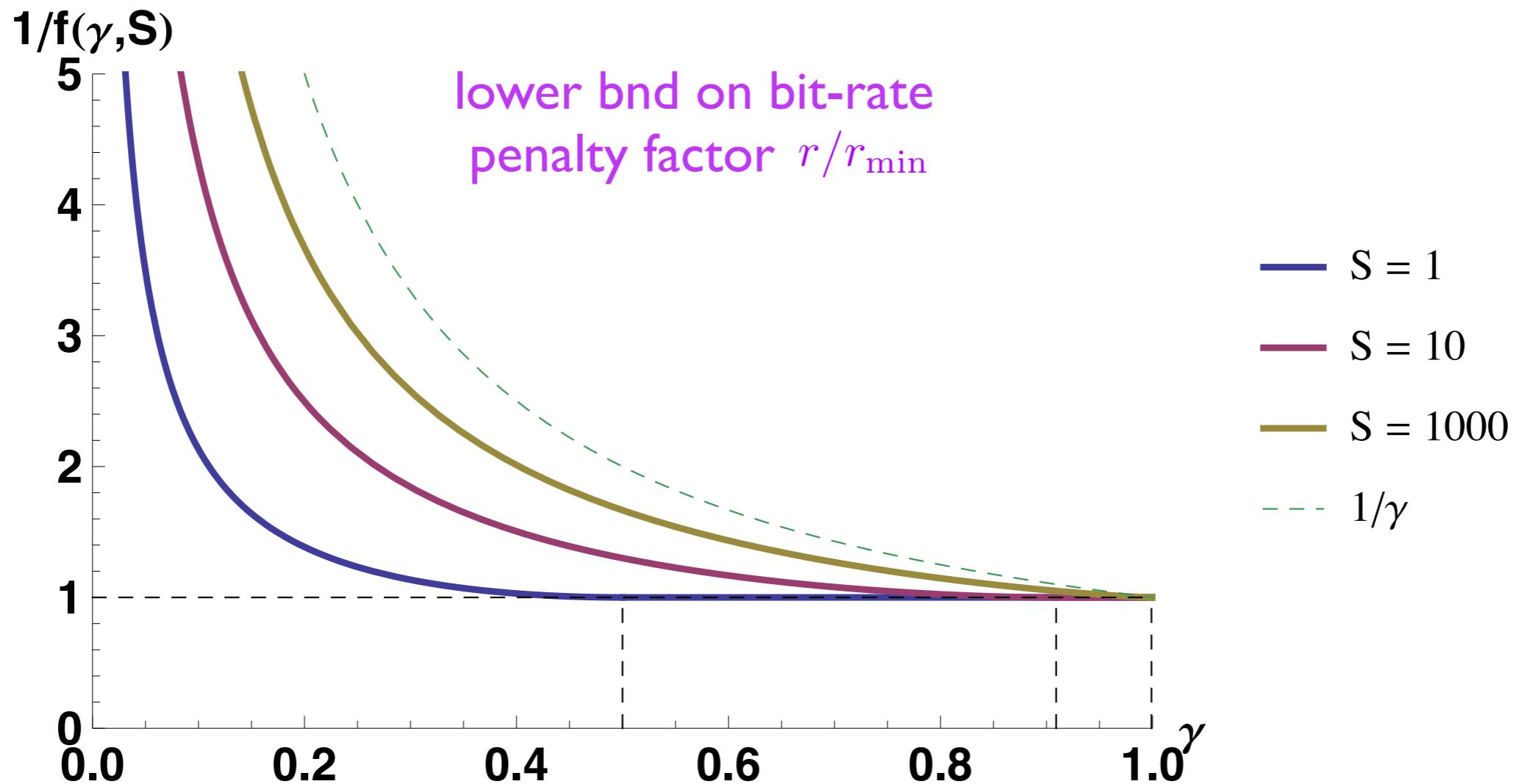
$$\frac{r}{r_{\min}} \geq \frac{1}{f(\gamma_{\max}, S)}$$

bit-rate penalty factor

Discussion

average
energy per tx

$$f(\gamma, S) := \begin{cases} \frac{H(\gamma) + \gamma \log_2 S}{\log_2(S+1)} & 0 \leq \gamma \leq \frac{S}{S+1} \\ 1 & \frac{S}{S+1} < \gamma \leq 1 \end{cases}$$

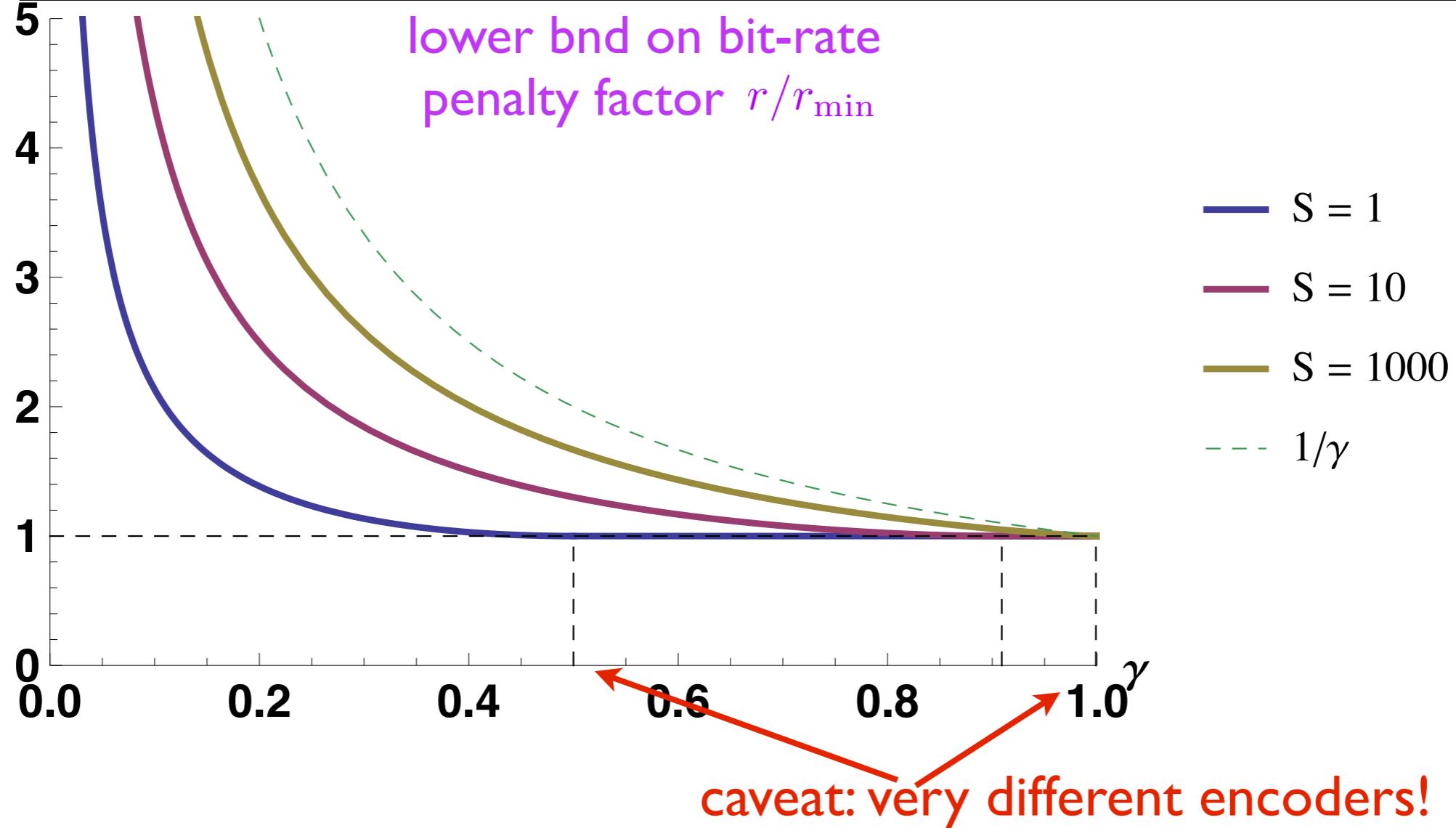


Discussion

average
energy per tx

$$f(\gamma, S) := \begin{cases} \frac{H(\gamma) + \gamma \log_2 S}{\log_2(S+1)} & 0 \leq \gamma \leq \frac{S}{S+1} \\ 1 & \frac{S}{S+1} < \gamma \leq 1 \end{cases}$$

Observation I: $\gamma=S/(S+1)$ is “just as good” as $\gamma=1$

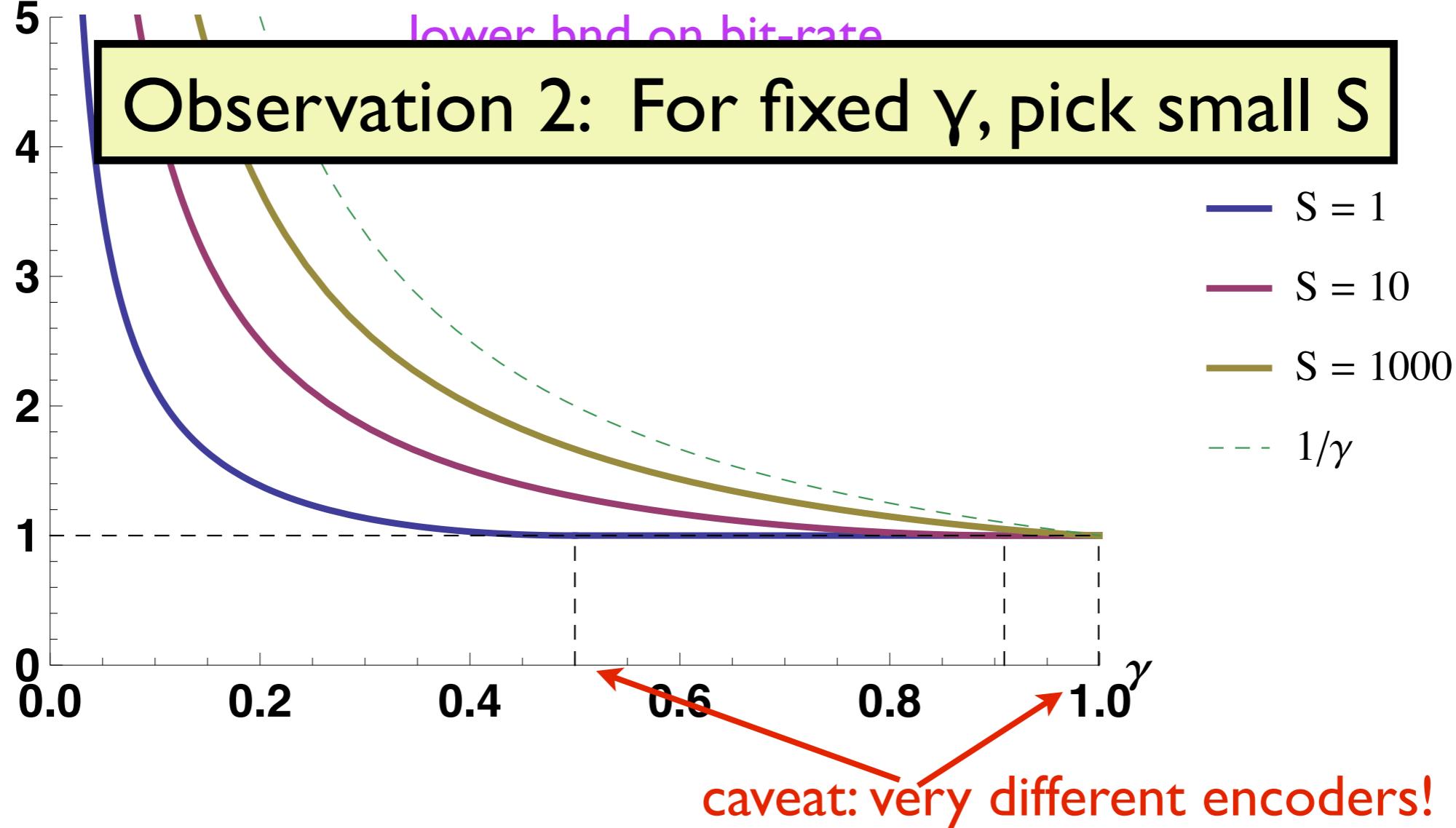


Discussion

average
energy per tx

$$f(\gamma, S) := \begin{cases} \frac{H(\gamma) + \gamma \log_2 S}{\log_2(S+1)} & 0 \leq \gamma \leq \frac{S}{S+1} \\ 1 & \frac{S}{S+1} < \gamma \leq 1 \end{cases}$$

Observation 1: $\gamma=S/(S+1)$ is “just as good” as $\gamma=1$



Discussion

Average rate of nonfrees per second: γ/T

Let γ be given. For any $\epsilon > 0$,

1. Pick large T to make $\gamma/T < \epsilon$

2. $r f(\gamma, S) \ln 2$ monot. inc. in S

3. Pick large S to satisfy

$$r f(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

Discussion

Average rate of nonfrees per second: γ/T

Let γ be given. For any $\epsilon > 0$,

1. Pick large T to make $\gamma/T < \epsilon$

2. $r f(\gamma, S) \ln 2$ monot. inc. in S

3. Pick large S to satisfy

$$r f(\gamma_{\max}, S) \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

Observation 3: Can make #nf/sec arbitrarily small

(at the cost of performance & complexity...)

Discussion

Average rate of nonfrees per second: γ/T

Let S be given. For any $\epsilon > 0$,

I. Define sequences

$$\gamma_k := e^{-k}, \quad T_k := e^{-k}\sqrt{k}, \quad k \in \mathbb{N}_{\geq 0}$$

2. Then $\gamma_k \rightarrow 0$, $T_k \rightarrow 0$, $\gamma_k/T_k \rightarrow 0$

but also $\frac{H(\gamma_k)}{T_k} = \frac{-\gamma_k \ln \gamma_k}{T_k} + O(\gamma_k) \rightarrow \infty$

3. So $r_k f(\gamma_k, S) \ln 2 \rightarrow \infty$, $\forall S \in \mathbb{N}_{>0}$

Discussion

Average rate of nonfrees per second: γ/T

Let S be given. For any $\epsilon > 0$,

1. Define sequences

$$\gamma_k := e^{-k}, \quad T_k := e^{-k}\sqrt{k}, \quad k \in \mathbb{N}_{\geq 0}$$

2. Then $\gamma_k \rightarrow 0$, $T_k \rightarrow 0$, $\gamma_k/T_k \rightarrow 0$

but also $\frac{H(\gamma_k)}{T_k} = \frac{-\gamma_k \ln \gamma_k}{T_k} + O(\gamma_k) \rightarrow \infty$

3. So $r_k f(\gamma_k, S) \ln 2 \rightarrow \infty$, $\forall S \in \mathbb{N}_{>0}$

Observation 3b: Can make #nf/sec arbitrarily small

(at the cost of requiring a precise clock...)

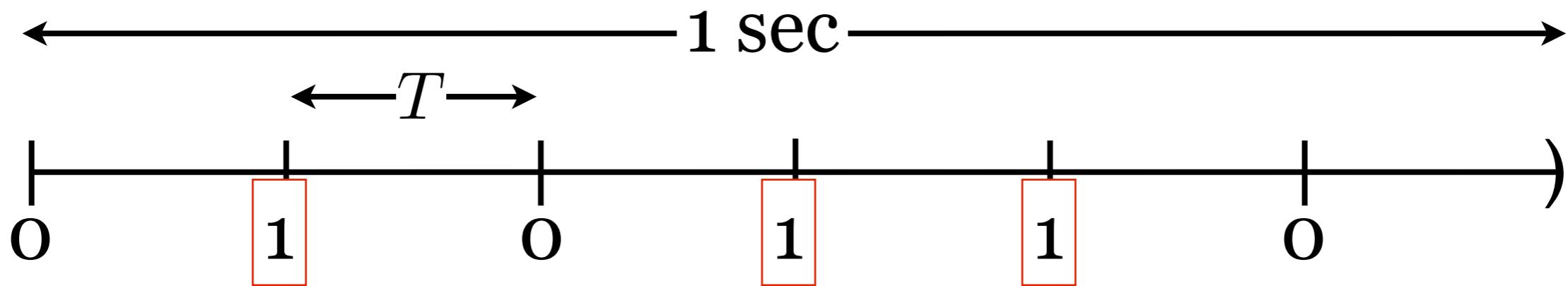
Discussion

Average rate of nonfrees per second: γ/T

Observation 3b: Can make #nf/sec arbitrarily small

(at the cost of requiring a precise clock...)

Example: 3 nfs/sec, $T=1/6$



$\binom{6}{3}$ sequences, $\log_2 \binom{6}{3}$ bits/sec

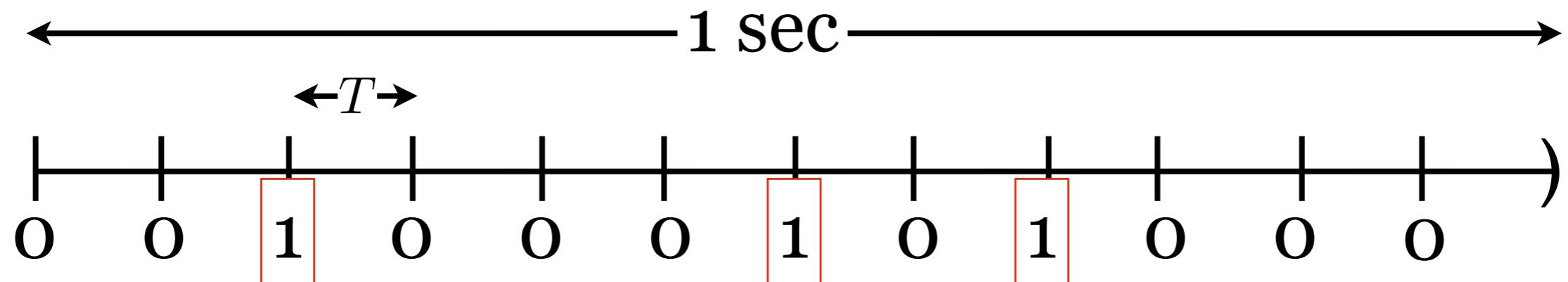
Discussion

Average rate of nonfrees per second: γ/T

Observation 3b: Can make #nf/sec arbitrarily small

(at the cost of requiring a precise clock...)

Example: 3 nfs/sec, $T=1/12$


$$\binom{12}{3} \text{ sequences, } \log_2 \binom{12}{3} \text{ bits/sec}$$

Discussion

$$\underbrace{r \ln 2}_{\text{bit-rate (nats/sec)}} \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

unstable evals

Discussion

$$\underbrace{r \ln 2}_{\text{bit-rate (nats/sec)}} \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

unstable evals

$$\left. \begin{array}{l} \frac{H(\gamma) + \gamma \ln S}{\ln(S+1)} \\ \frac{T}{S+1} < \gamma \leq 1 \end{array} \right\} = r \boxed{f(\gamma, S)} \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

new

Discussion

$$\underbrace{r \ln 2}_{\text{bit-rate (nats/sec)}} \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

unstable evals

$$\left. \frac{H(\gamma) + \gamma \ln S}{\frac{\ln(S+1)}{T}} \right\} \begin{array}{l} 0 \leq \gamma \leq \frac{S}{S+1} \\ \frac{S}{S+1} < \gamma \leq 1 \end{array} = r \boxed{f(\gamma, S)} \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

entropy of RV taking values $\{0, \dots, S\}$ w.p.

$$p(x) = \begin{cases} 1 - \gamma & x = 0 \\ \gamma/S & x = 1, \dots, S \end{cases}$$

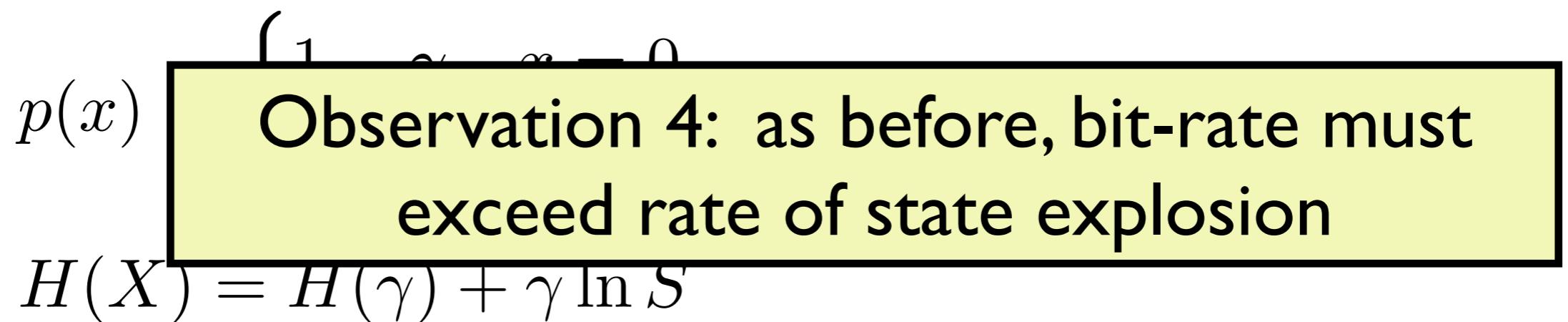
$$H(X) = H(\gamma) + \gamma \ln S$$

Discussion

$$\underbrace{r \ln 2}_{\text{bit-rate (nats/sec)}} \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

$\boxed{\frac{H(\gamma) + \gamma \ln S}{\ln(S+1) - \frac{T}{S+1}} \quad \left. \begin{array}{l} 0 \leq \gamma \leq \frac{S}{S+1} \\ \frac{S}{S+1} < \gamma \leq 1 \end{array} \right\} = r \boxed{f(\gamma, S)} \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]}$

entropy of RV taking values $\{0, \dots, S\}$ w.p.

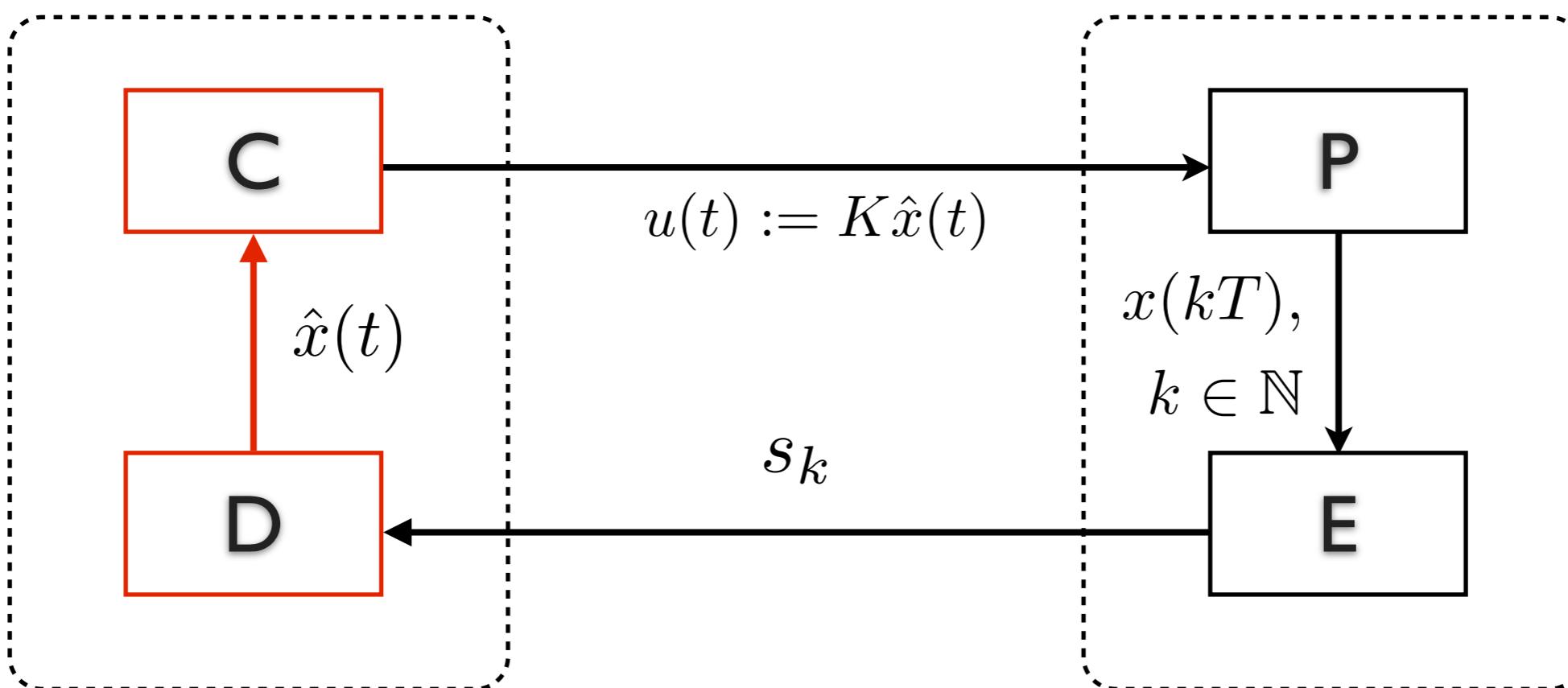


Outline

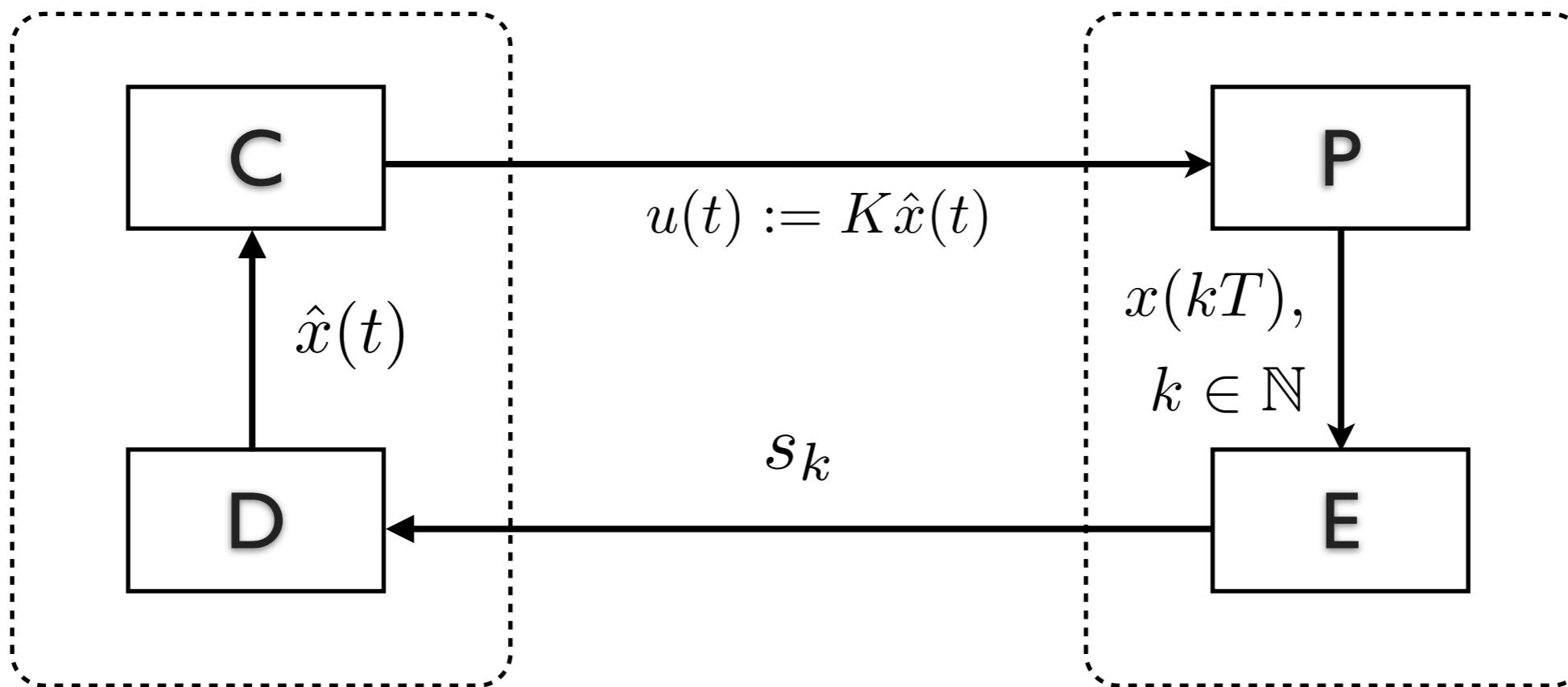
- Problem setup
- Prior work
- Necessary & Sufficient main result
- **Event-based encoding**

Event-based Encoding

- “Emulation-based” controller:
 - $u(t) := Kx(t)$ stabilizes original process
 - (Assume $A-BK$ is Hurwitz)
- “Event-based” encoder/decoder pair
 - 0 : absence of an event



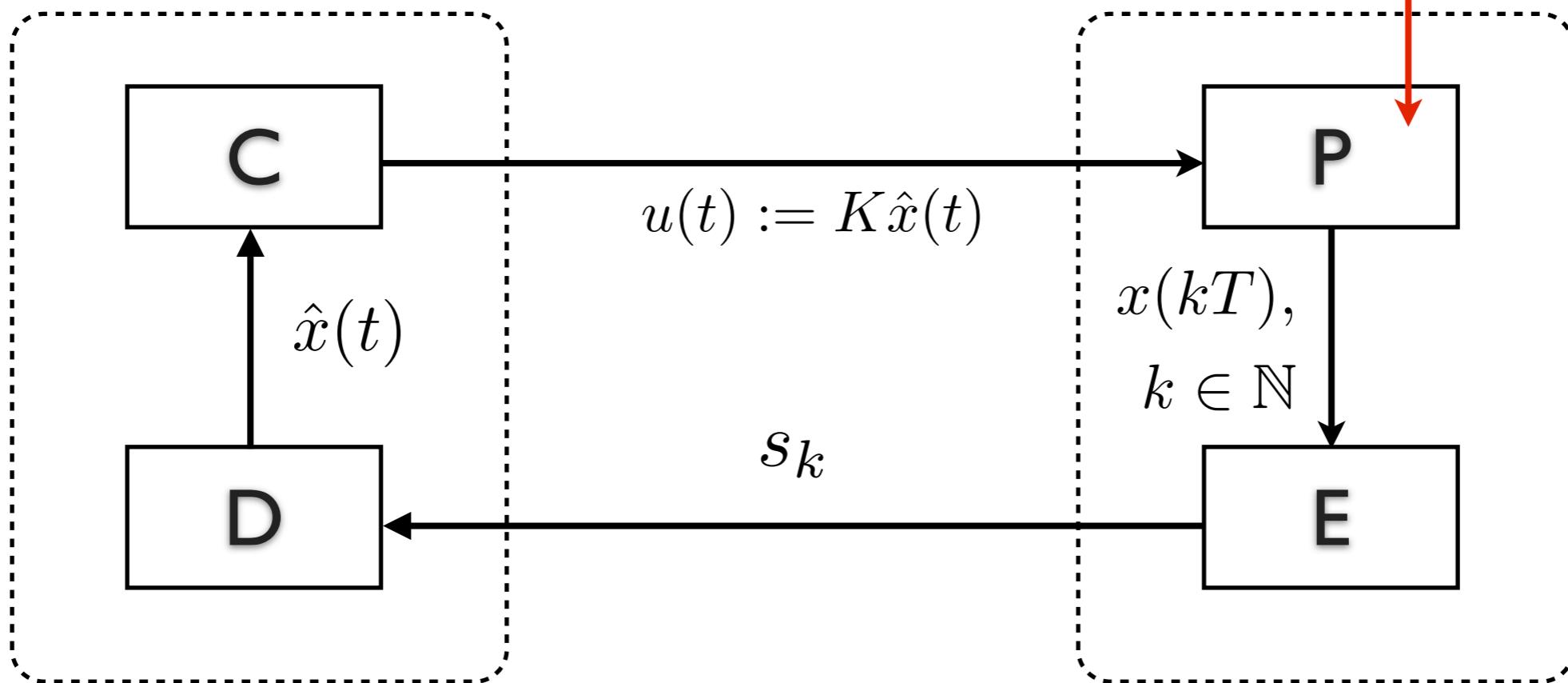
Event-based Encoding



Event-based Encoding

$$\dot{x}(t) = Ax(t) + Bu(t)$$

dynamics



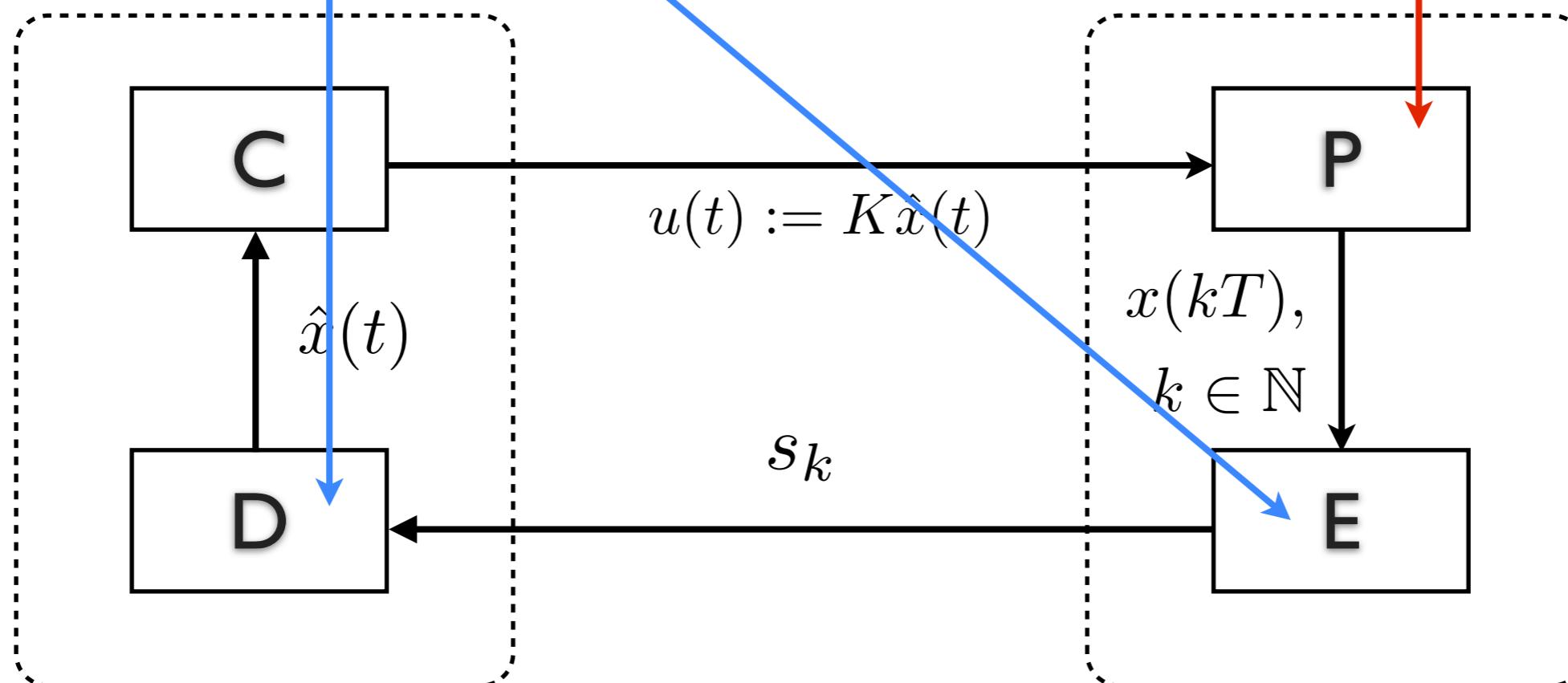
Event-based Encoding

$$\dot{x}(t) = Ax(t) + Bu(t)$$

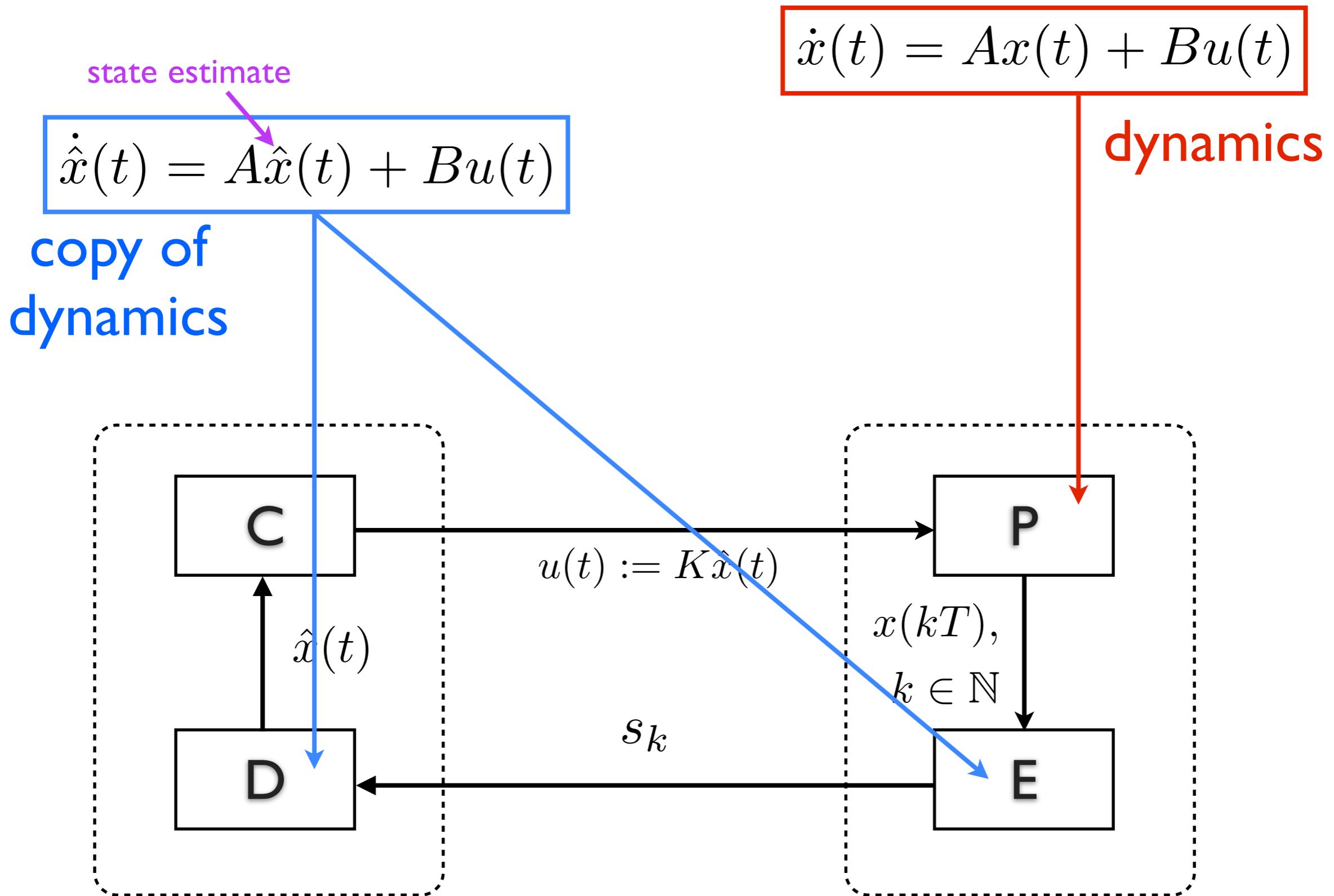
$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t)$$

copy of
dynamics

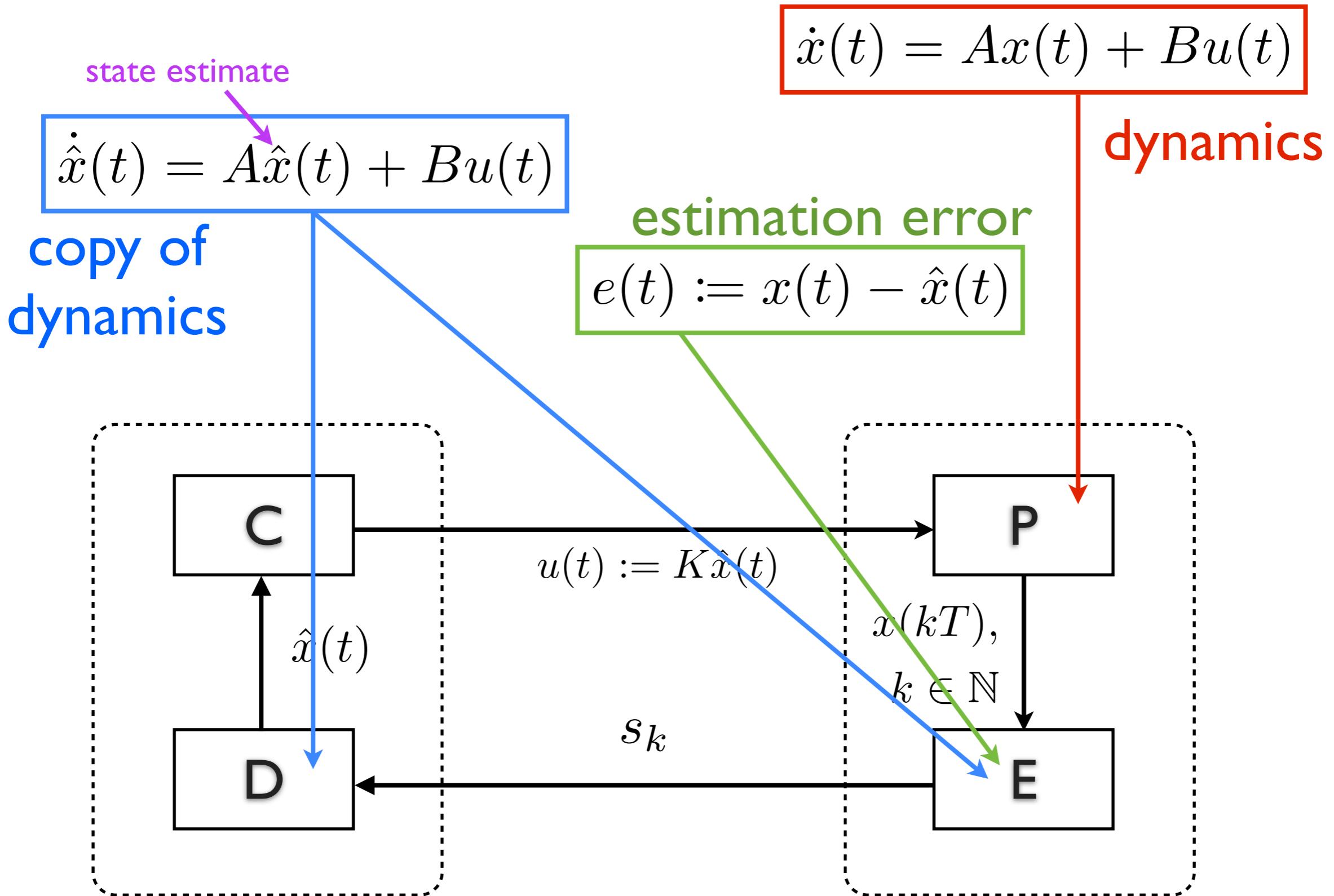
dynamics



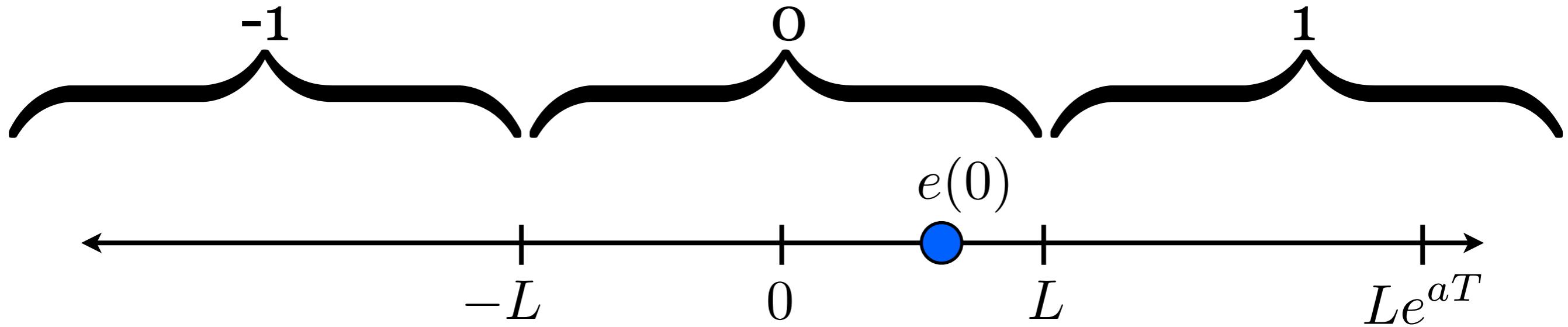
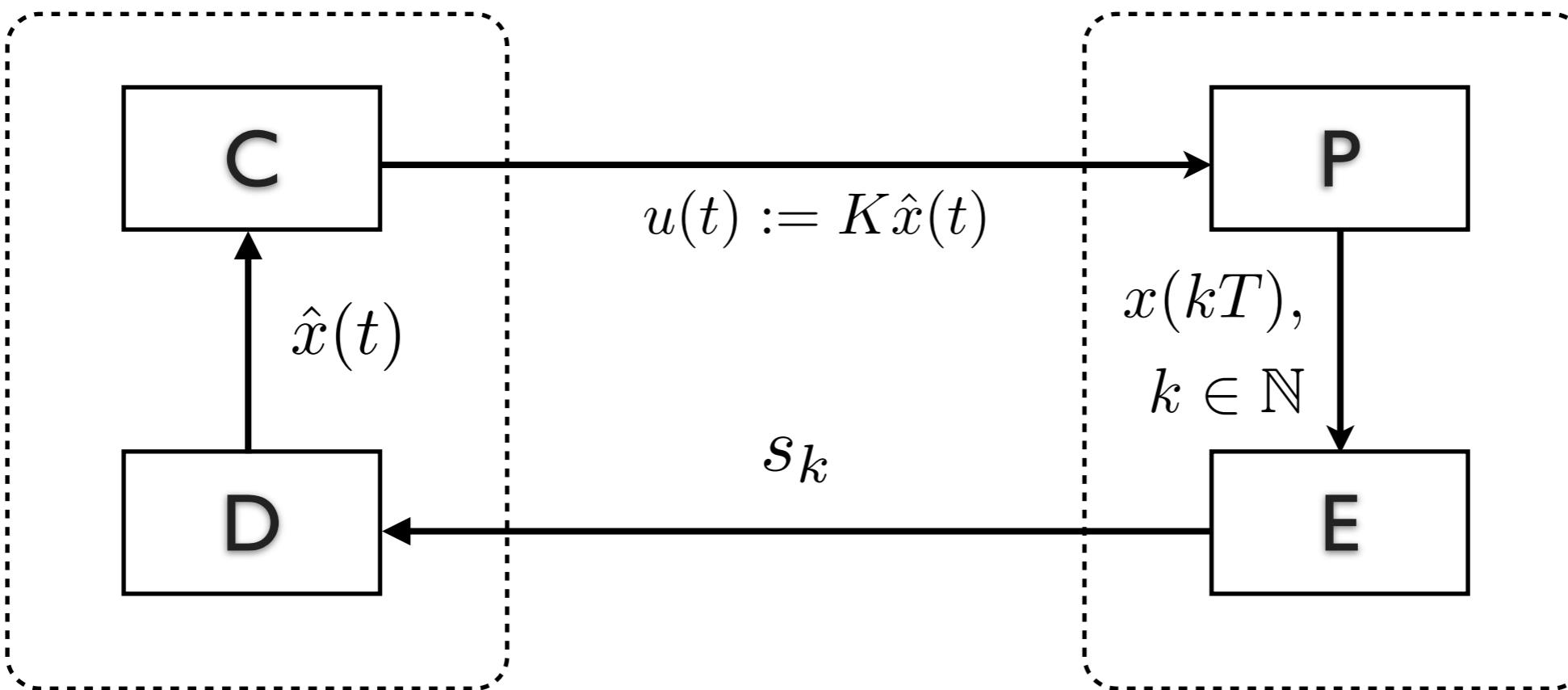
Event-based Encoding



Event-based Encoding

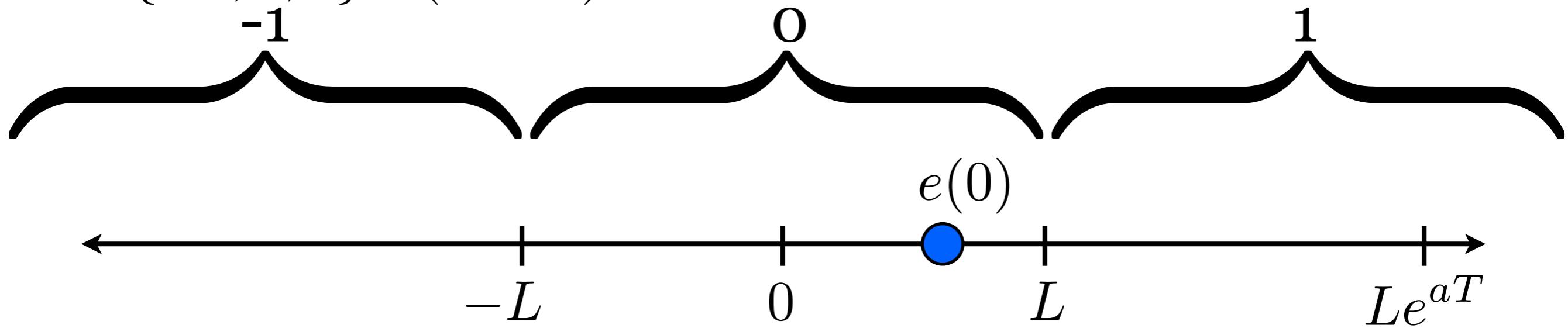
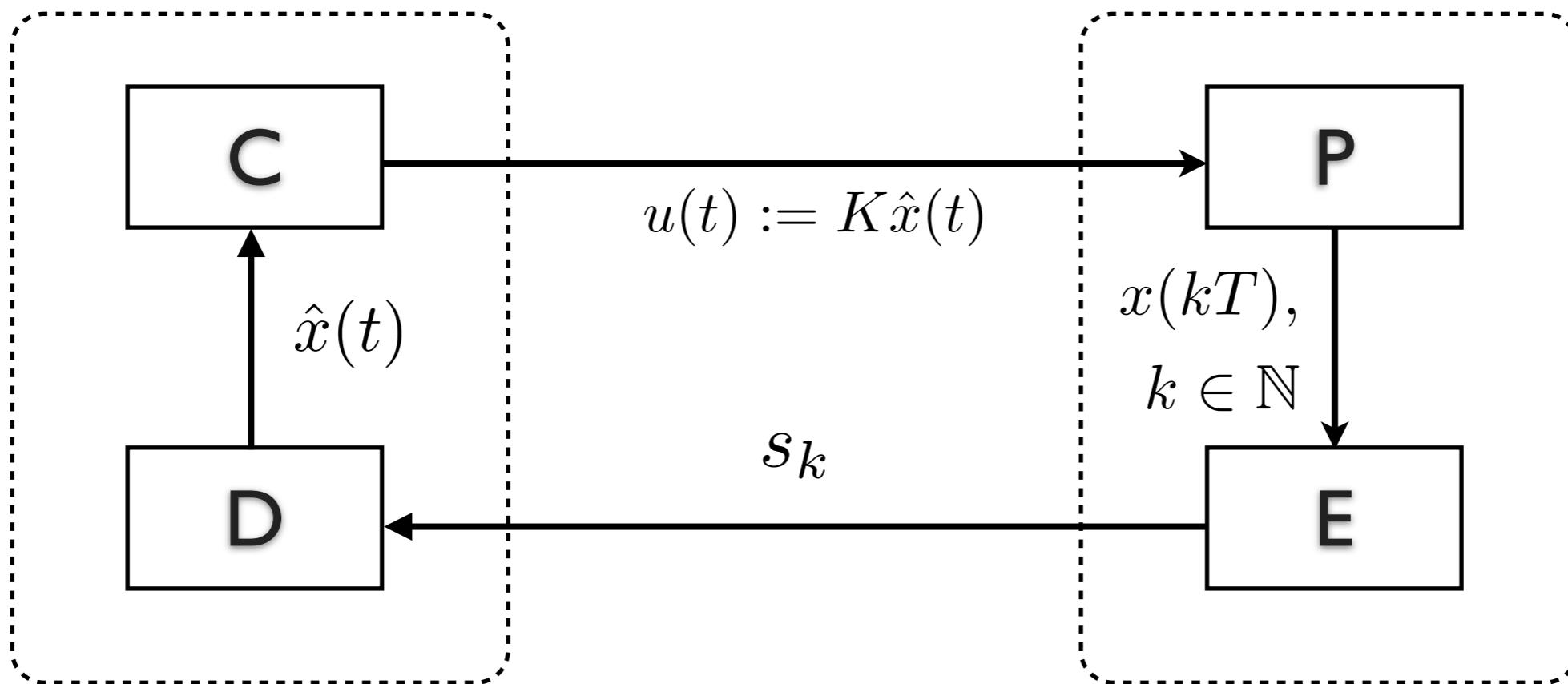


Event-based Encoding

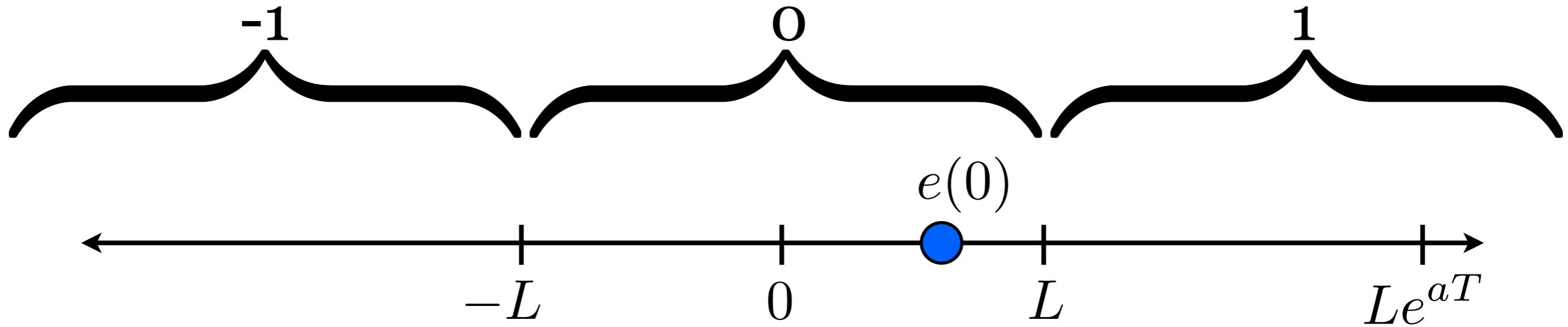
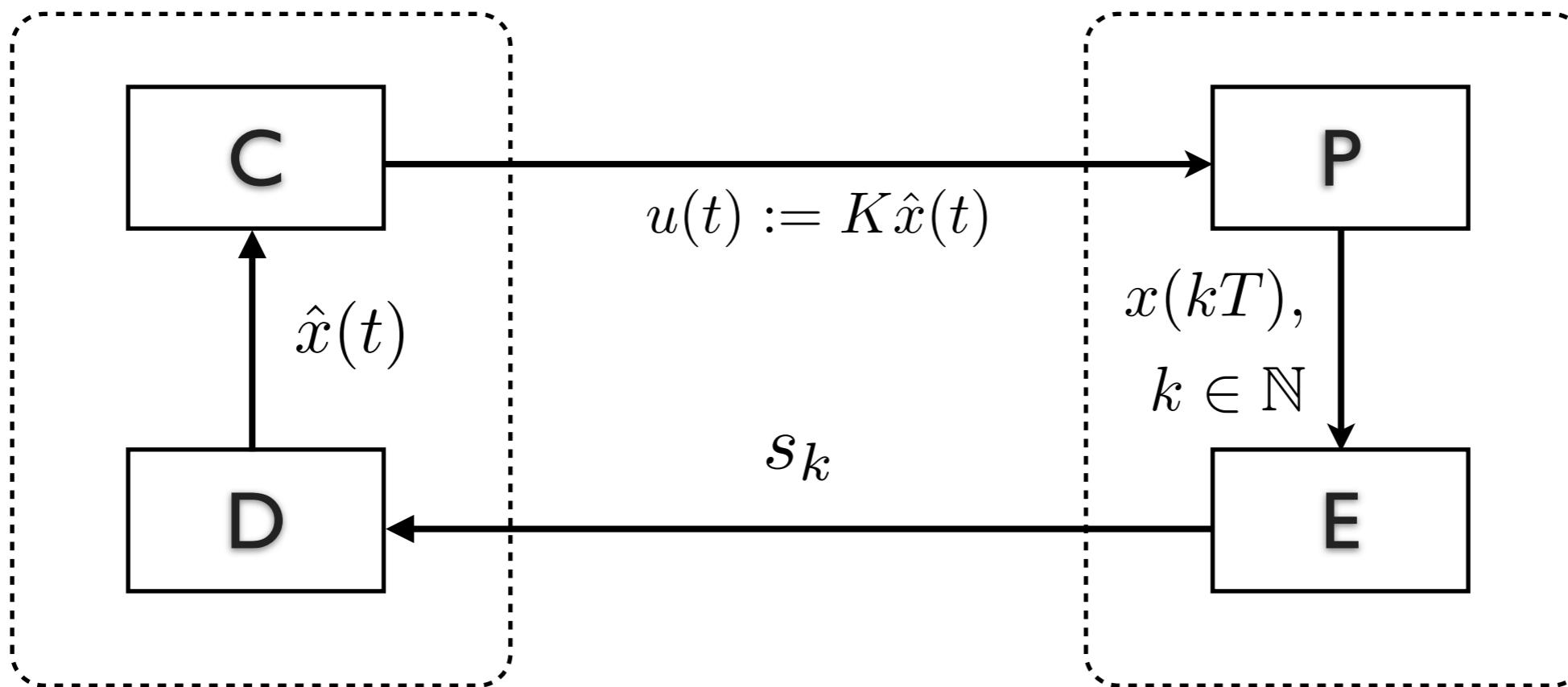


Event-based Encoding

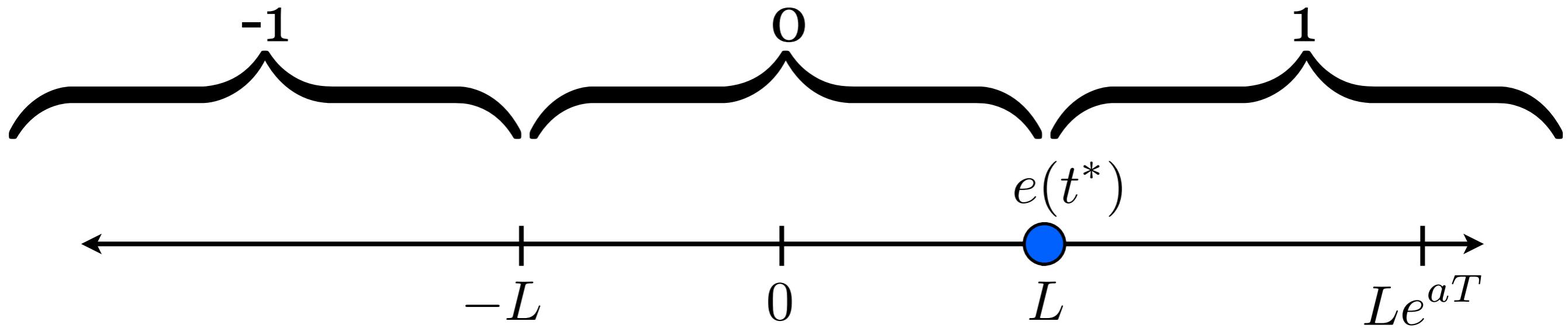
$$\mathcal{A} := \{-1, 0, 1\} \quad (S = 2)$$



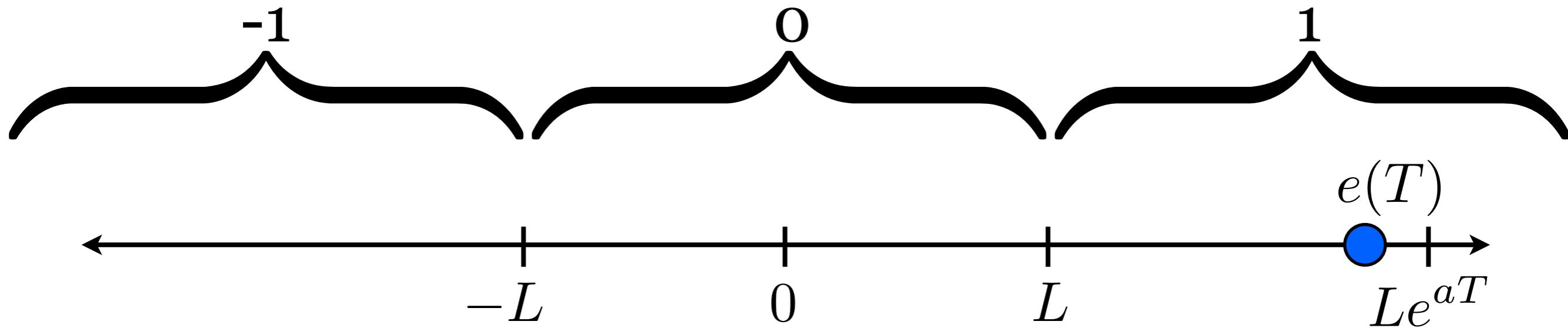
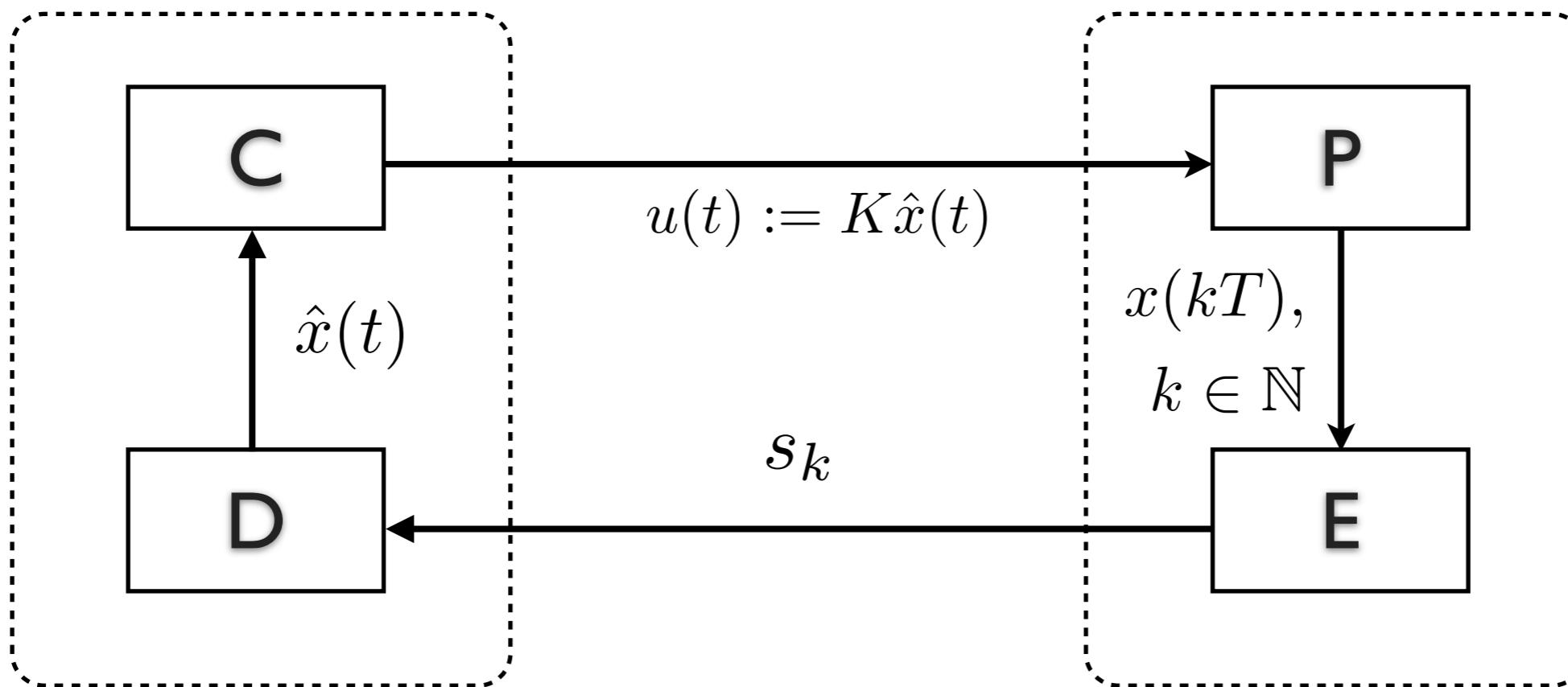
Event-based Encoding



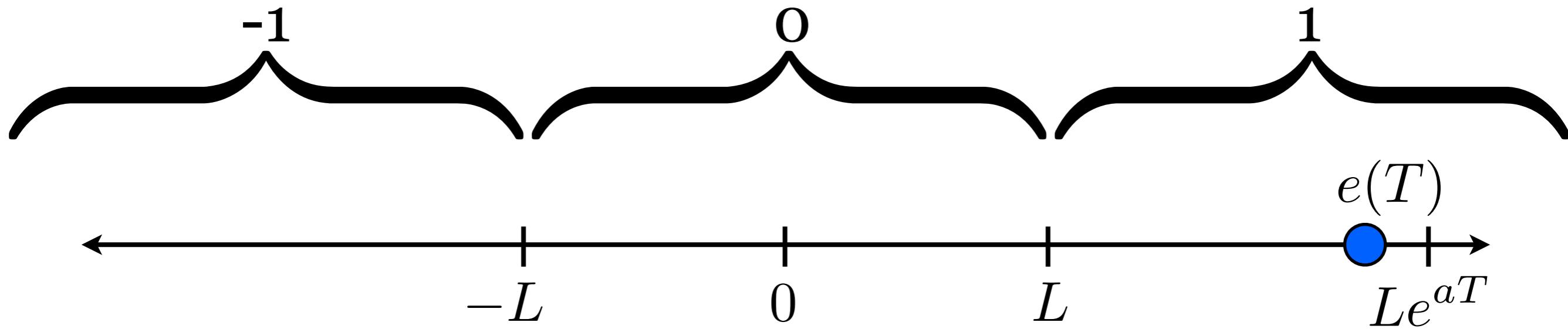
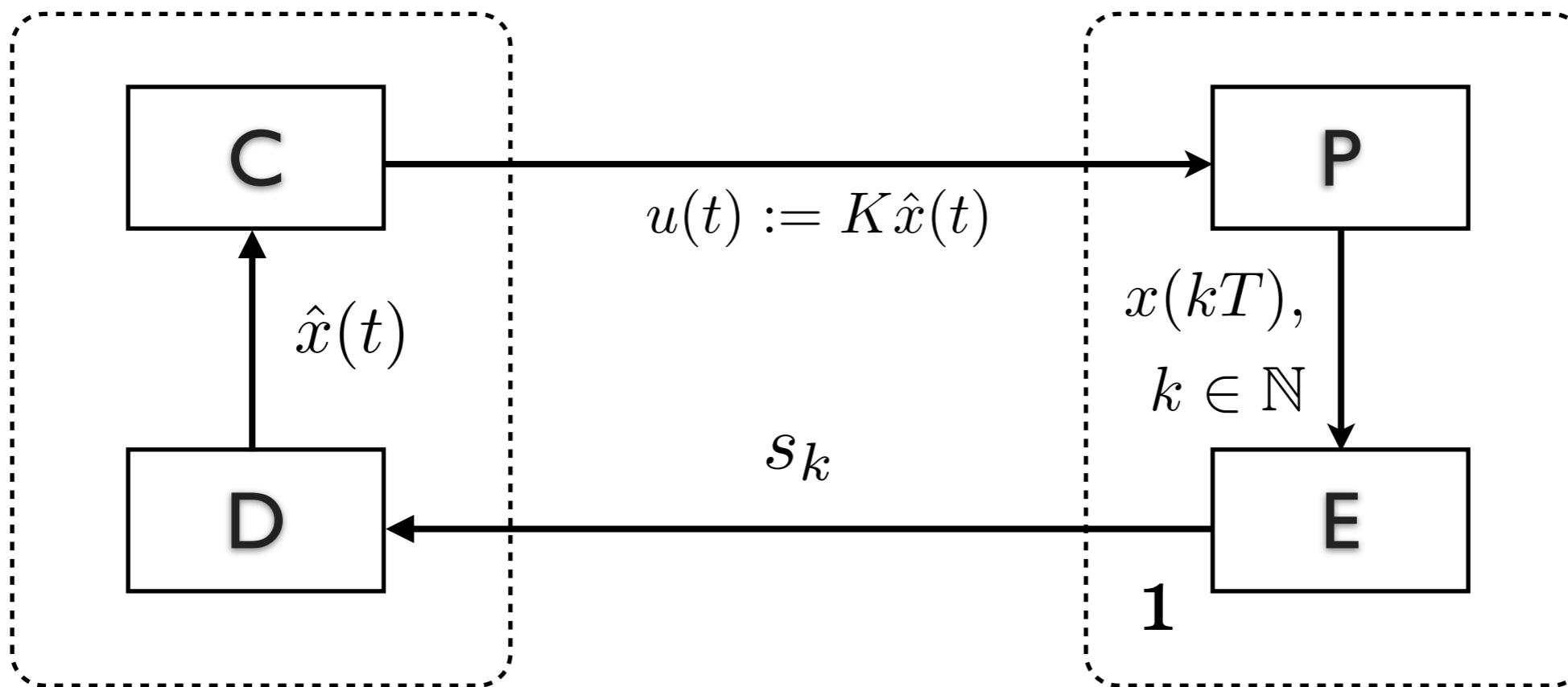
Event-based Encoding



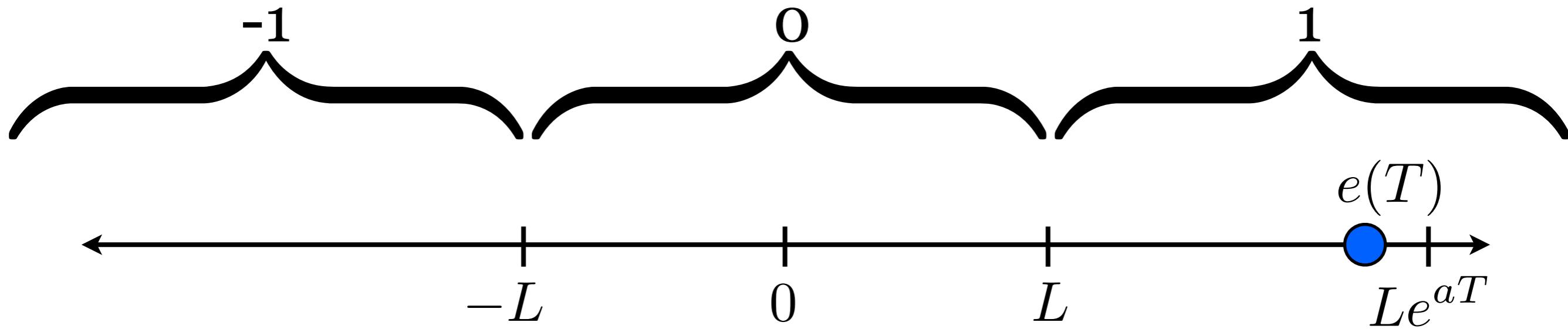
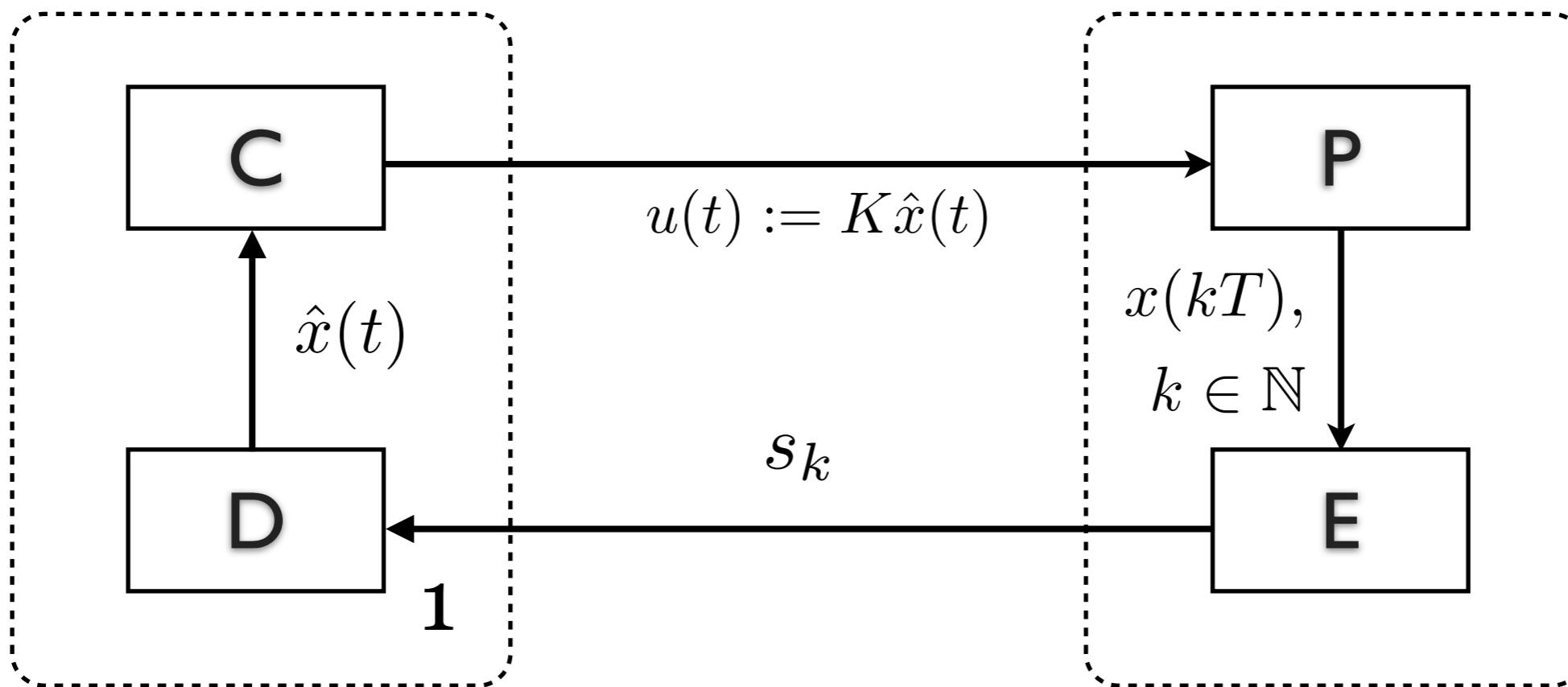
Event-based Encoding



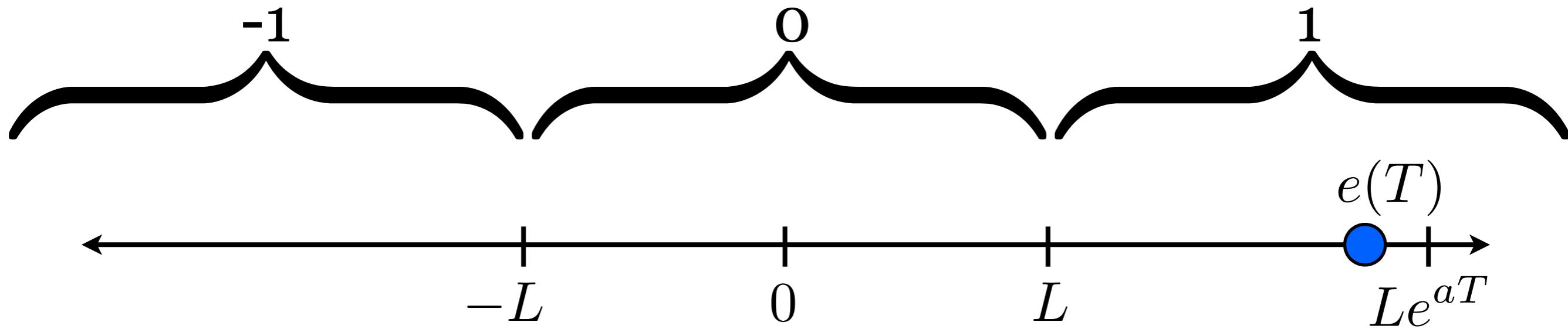
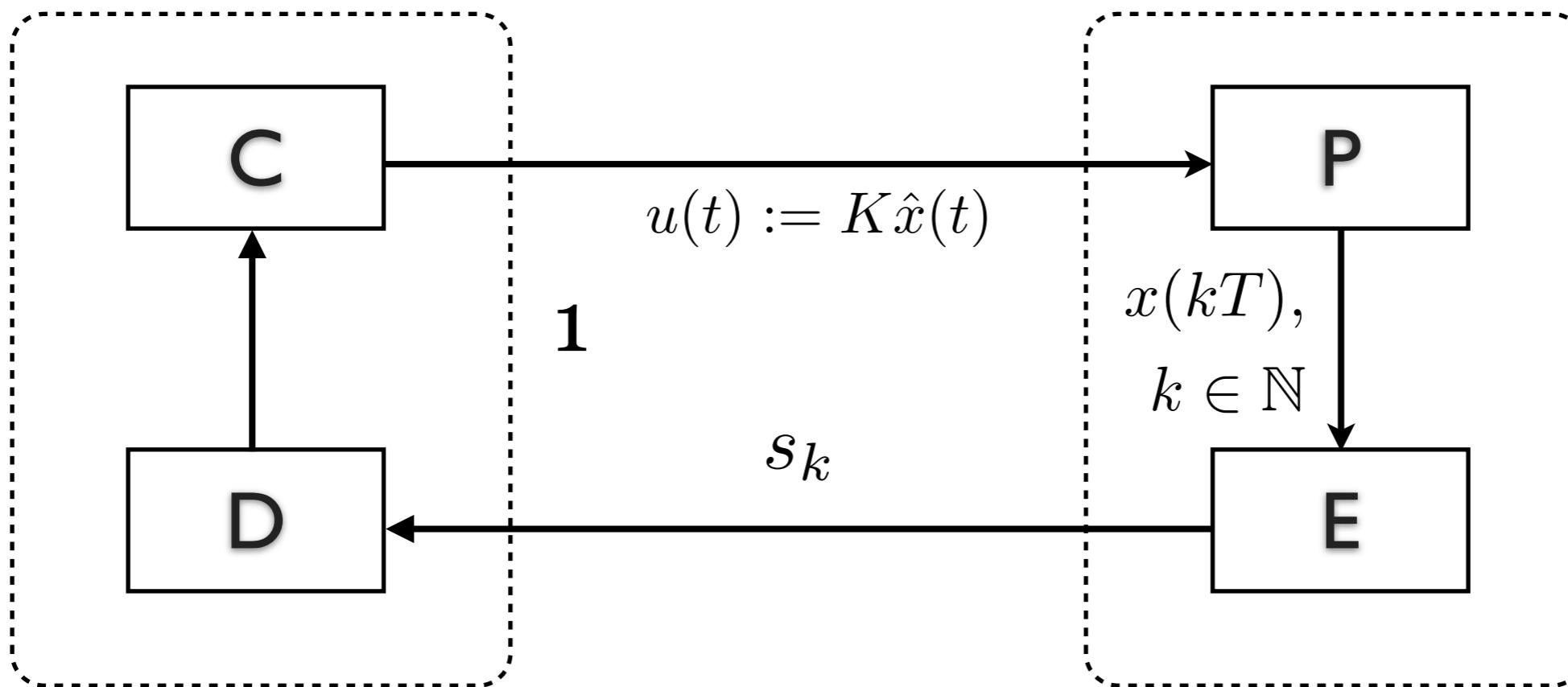
Event-based Encoding



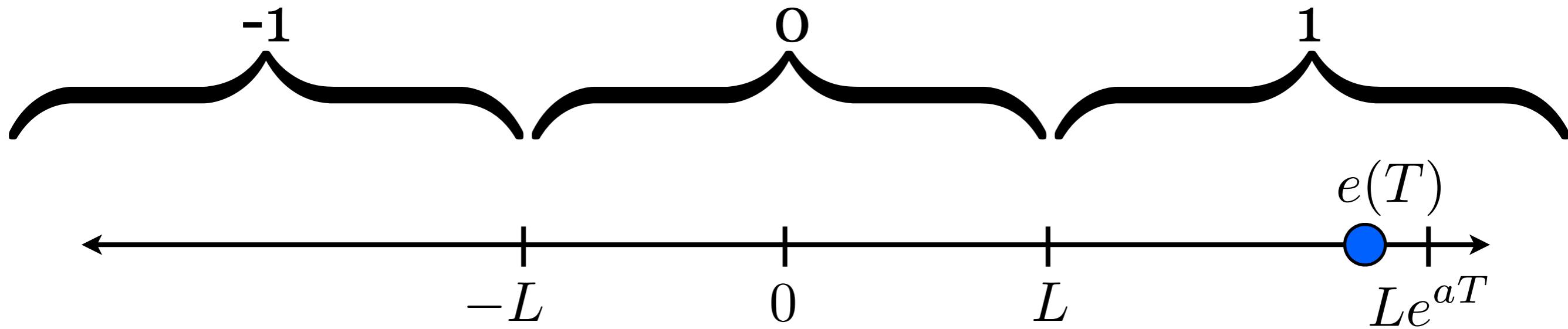
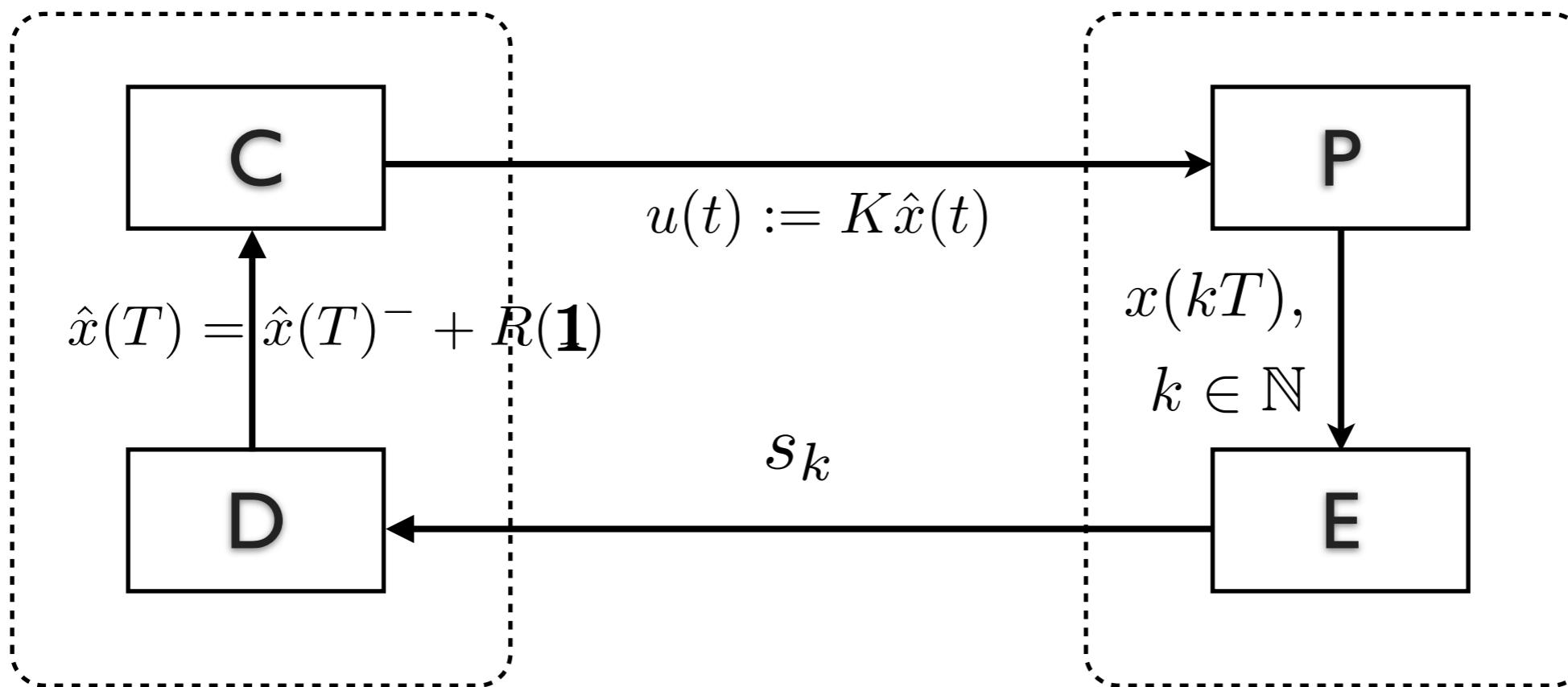
Event-based Encoding



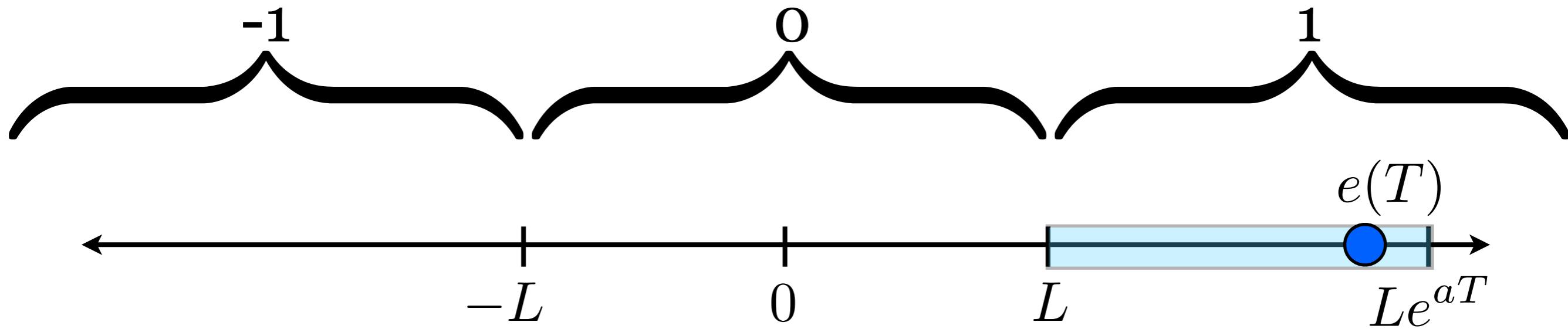
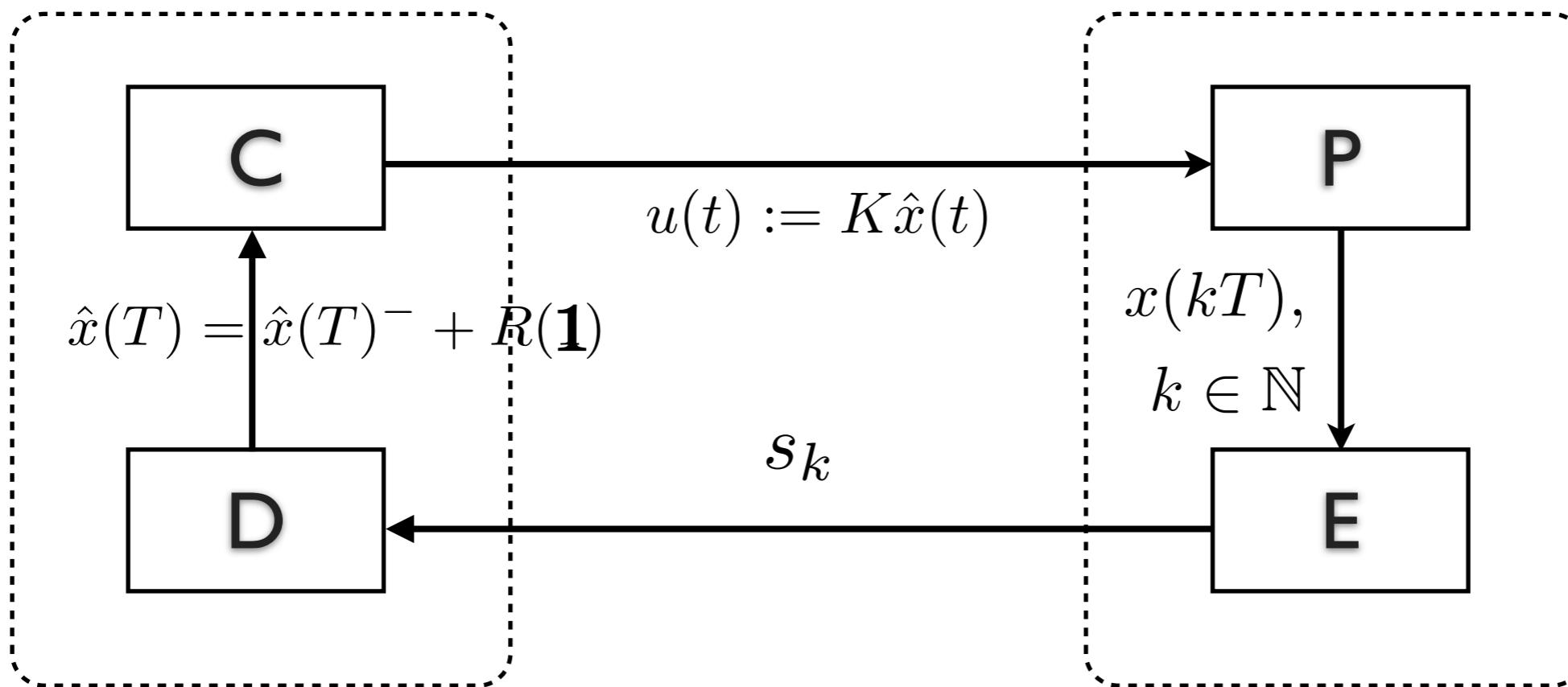
Event-based Encoding



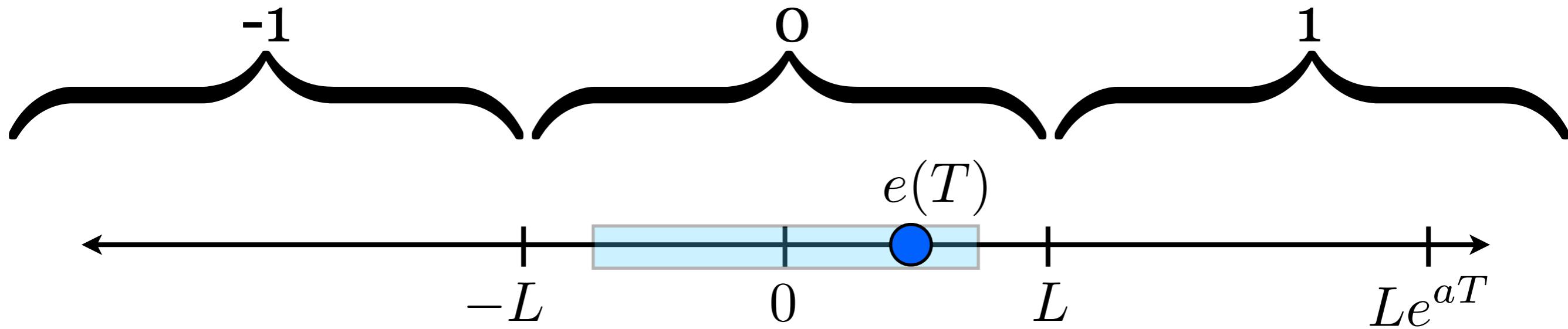
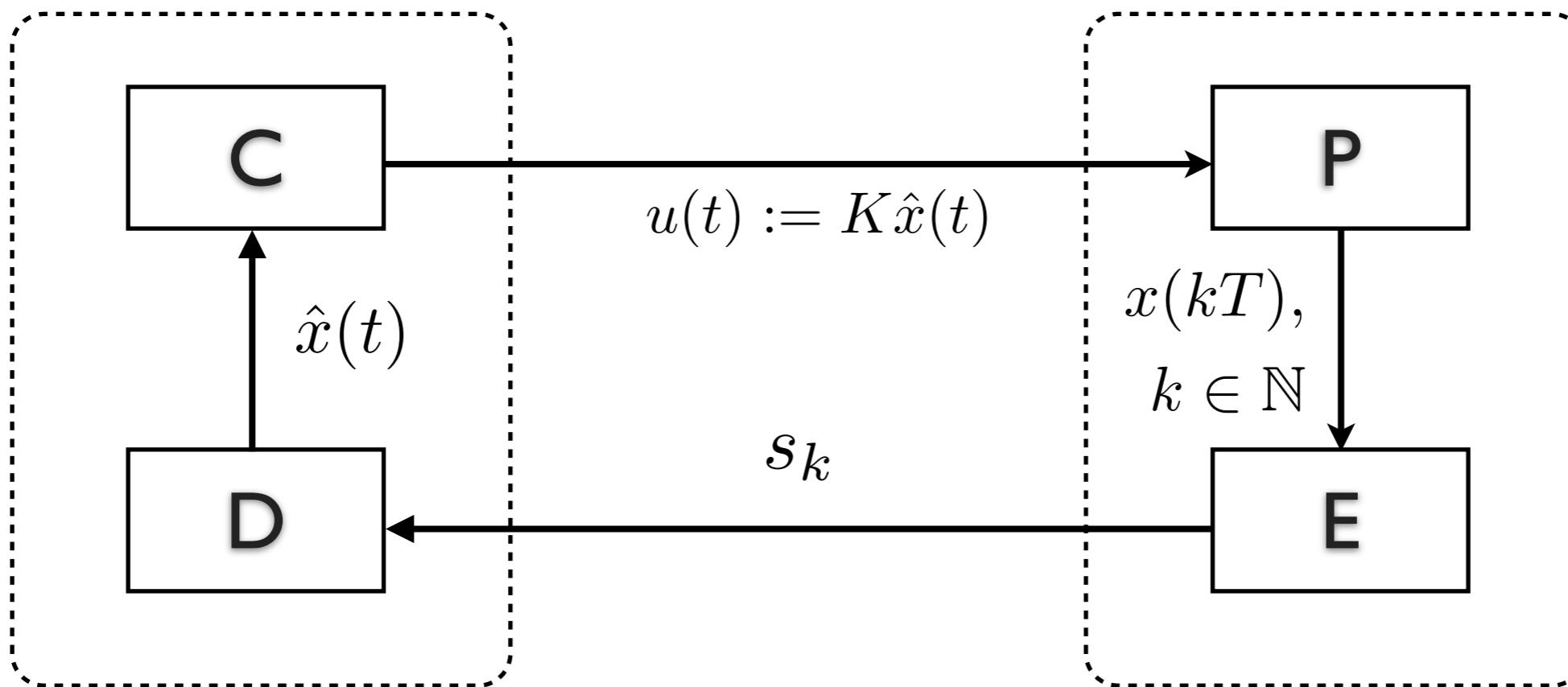
Event-based Encoding



Event-based Encoding

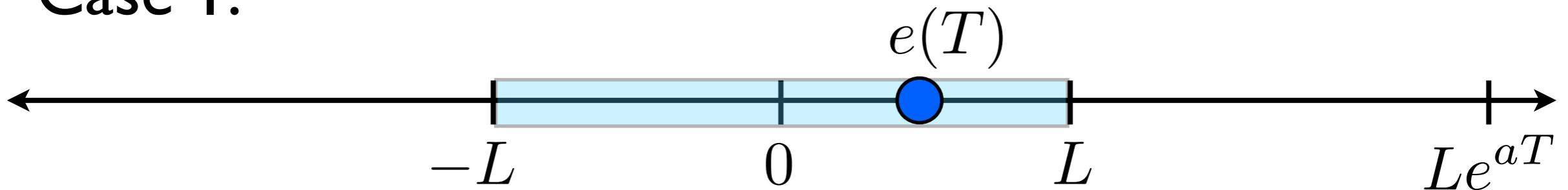


Event-based Encoding



Event-based Results

Case I:



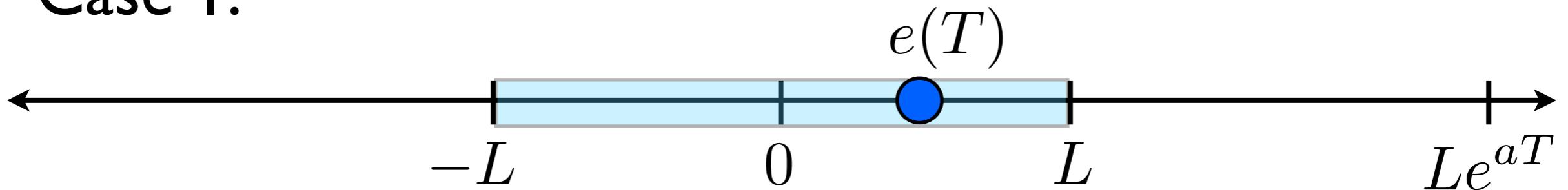
If r and \mathbf{A} satisfy

$$r \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

then an emulation-based controller and event-based encoder/decoder pair exist with bit-rate r which bound $x(t)$

Event-based Results

Case I:



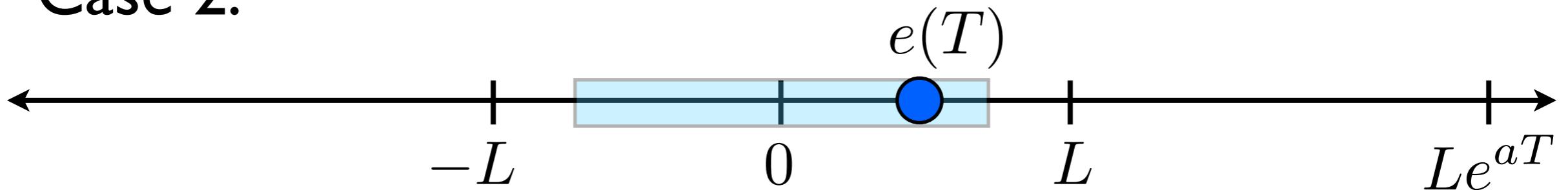
If r and \mathbf{A} satisfy

$$r \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

then an emulation-based controller and event-based encoder/decoder pair exist with bit-rate r which bound $x(t)$
(encoder will have $\gamma=1$)

Event-based Results

Case 2:



If r , γ_{\max} , and A satisfy

$$r \boxed{\frac{h^{-1}(\gamma_{\max})}{\ln 3}}_{\text{new}} \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A] \quad h(x) := \frac{1}{1 + \frac{1}{x} \ln \frac{2}{e^x - 1}}$$

then an emulation-based controller and event-based encoder/decoder pair exist with bit-rate r and **with ave. comm. $\leq \gamma_{\max}$** which bound $x(t)$

Event-based Results

Compare the two lower bounds on **bit-rate penalty factor**

$$\begin{aligned} r \frac{h^{-1}(\gamma_{\max})}{\ln 3} \ln 2 &\geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A] \\ \text{event-based: } \frac{r}{r_{\min}} &\geq \frac{1}{\frac{h^{-1}(\gamma_{\max})}{\ln 3}} \\ \text{nec/suff: } \frac{r}{r_{\min}} &\geq \frac{1}{f(\gamma_{\max}, S)} \end{aligned}$$

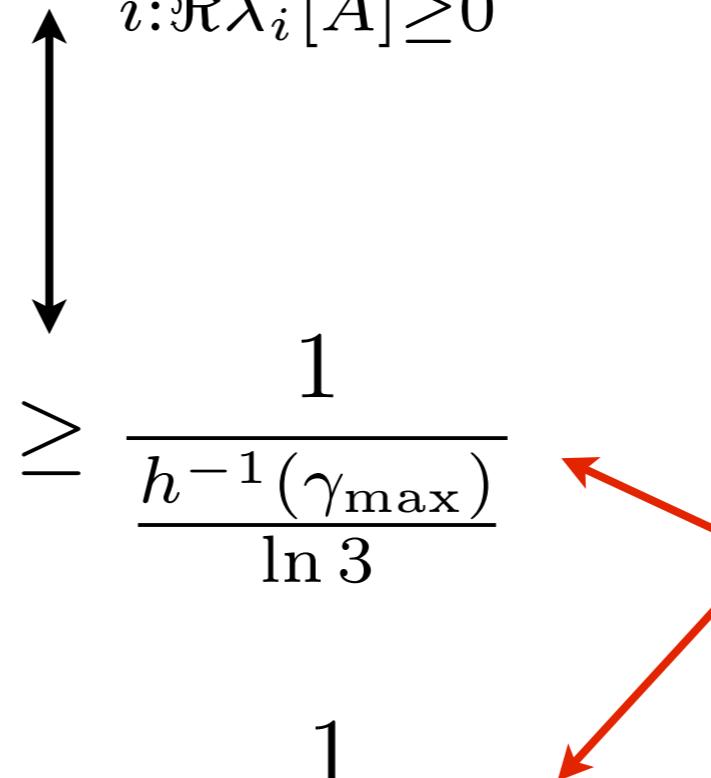
Event-based Results

Compare the two lower bounds on bit-rate penalty factor

$$r \frac{h^{-1}(\gamma_{\max})}{\ln 3} \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

event-based: $\frac{r}{r_{\min}} \geq \frac{1}{\frac{h^{-1}(\gamma_{\max})}{\ln 3}}$

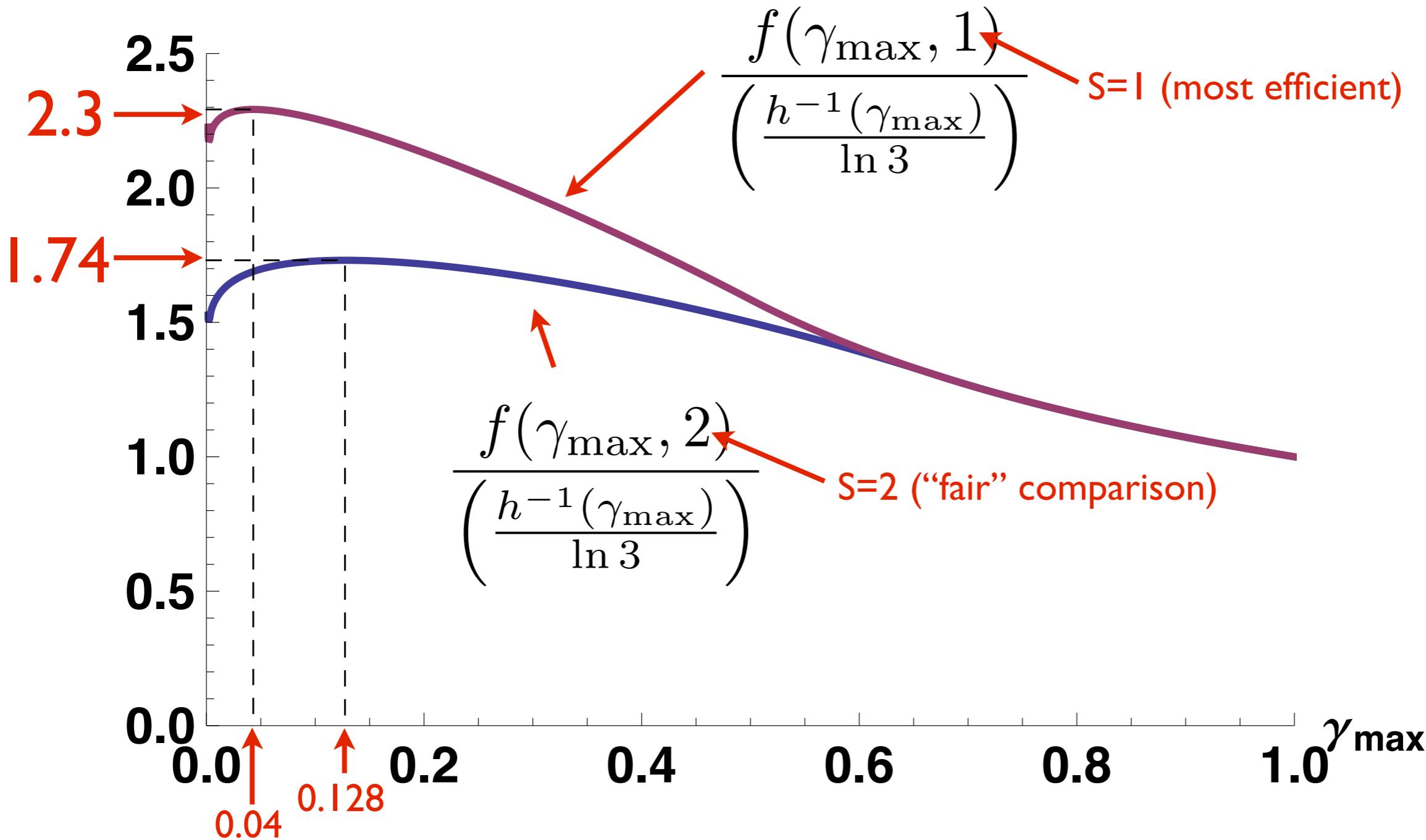
nec/suff: $\frac{r}{r_{\min}} \geq \frac{1}{f(\gamma_{\max}, S)}$



ratio: how
conservative is
event-based?

Event-based Results

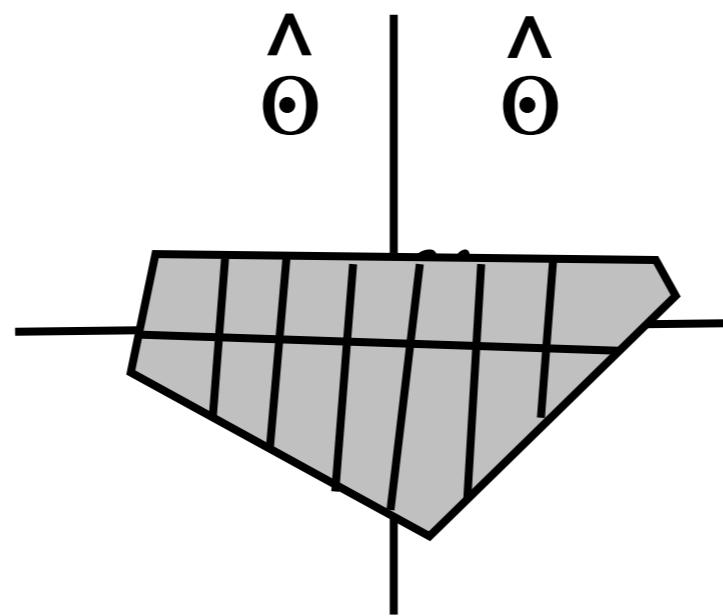
Event-based encoder has a bit-rate $<2.3x$ that of any other bounding encoder with ave comm γ_{\max}



Conclusion

- Control a linear system under bit-rate & communication constraints
- Nec/suff condition for a bounding enc/dec
- Easily-implemented event-based enc/dec within 2.3x of lowest possible bit-rate

Thanks



Backup/Cool Slides

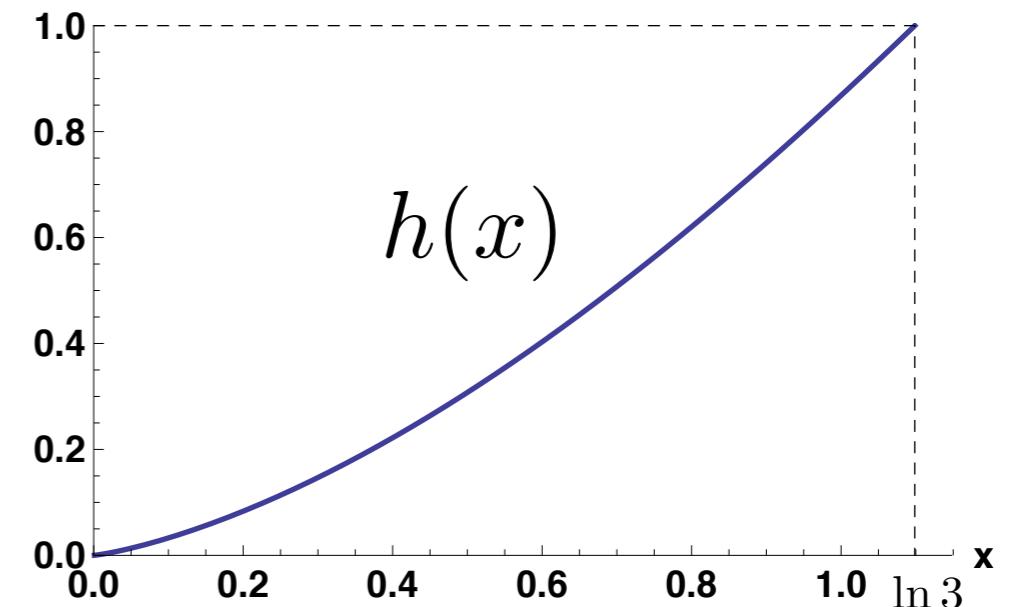
Event-based Results

If r , γ , and A satisfy

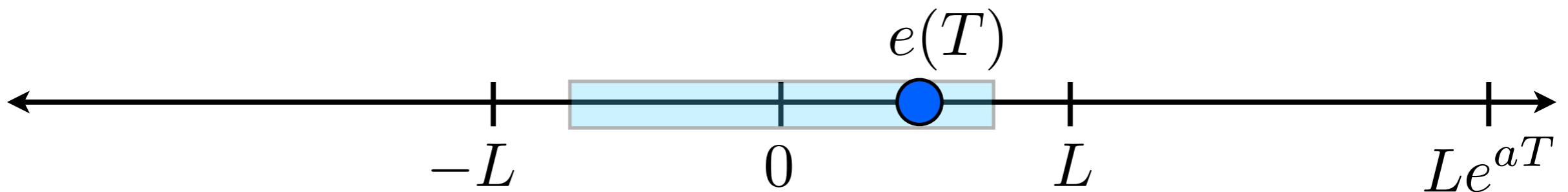
$$r \frac{h^{-1}(\gamma_{\max})}{\ln 3} \ln 2 \geq \sum_{i: \Re \lambda_i[A] \geq 0} \lambda_i[A]$$

new

$$h(x) := \frac{1}{1 + \frac{1}{x} \ln \frac{2}{e^x - 1}}$$



then an emulation-based controller and event-based encoder/decoder pair exist with bit-rate r and **with ave. comm $\leq \gamma$ which bound $x(t)$**



Example

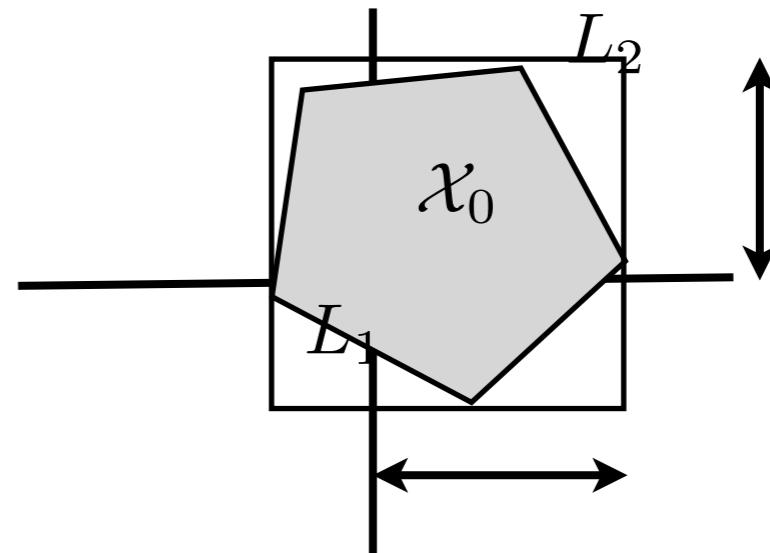
- $S=1$ (bits)
- (animated example?)
- $N=5$ (show codewords?)
- Show M-of-N encoders?
- show example of $\{0,1\}, T=0.1$ versus $\{0,\dots,64000\}, T=1$ which have the same bit-rate but the bigger alphabet is not better.

Event-based enc/dec

- The enc has n “sub-encoders” which send one of $\{-1, 0, 1\}$ every T_i sec if $|x_i| > L_i$, with

$$T_i := \frac{h^{-1}(\gamma_{\max})}{\lambda_i[A]}$$

$$L_i := \sup_{z \in \mathcal{X}_0} |z_i|,$$



Event-based enc/dec

At each timestep $t_{i,k} := T_i k$ with $i \in \{1, \dots, n\}$, $k \in \mathbb{N}$, the i th sub-encoder sends symbol $s_{i,k} \in \{-1, 0, 1\}$ according to

$$s_{i,k} = \begin{cases} -1 & e_i(T_i k) < -L_i \\ 0 & e_i(T_i k) \in [-L_i, L_i], \quad i \in \{1, \dots, n\}, \quad k \in \mathbb{N}. \\ 1 & e_i(T_i k) > L_i \end{cases} \quad (1)$$

This concludes the description of the encoder. Unlike the encoder, the decoder does not have access to $x(t)$, so it cannot compute the estimation error $e(t)$. It has access to only its own internal state estimate $\hat{x}(t)$, the received symbols $s_{i,k}$, and each sub-encoder's T_i and L_i . At timestep $t_{i,k} := T_i k$, the decoder receives symbol $s_{i,k}$ and at that time it and the encoder each update the i th component of their state estimates $\hat{x}_i(T_i k)$ as

$$\hat{x}_i(T_i k) = \hat{x}_i(T_i k)^- + R_i(s_{i,k}), \quad i \in \{1, \dots, n\}, \quad k \in \mathbb{N}, \quad (2)$$

where for each dimension i , the decoding function $R_i : \mathcal{A} \rightarrow \mathbb{R}$ is defined as

$$R_i(s) := \begin{cases} -\frac{L_i}{2}(1 + \exp(h^{-1}(\gamma_{\max}))) & s = -1 \\ 0 & s = 0 \\ \frac{L_i}{2}(1 + \exp(h^{-1}(\gamma_{\max}))) & s = 1. \end{cases} \quad (3)$$

(N,M,S) Encoders

- Introduce (N,M,S) encoders
- Show that any S-library encoder is (N,M,S) for some N,M
- Show that $L(N, N \text{ gam}, S) \rightarrow H(X)$