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omg demo First:



rotary-inverted-pendulum-balance-from-beaglebone-v2.MOV

BBB 
balances  
pendulum

Demo
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motor

potentiometer 
for arm encoder  

for pendulum

pendulum

arm

2 outputs 
pendulum angle (rad) (QEP) 

arm angle (rad) (pot V)

Pendulum 
system

1 input 
motor voltage (V)



Quadrature-encoded pulses



Rotary Potentiometer



Motor
Faulhaber 
Coreless 
DC motor 
-5V to 5V 

we drive w/ PWM
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Beaglebone Black







Easy setup: USB & browser



Capes for I/O



BBB hw setup
• Exposed header pin rows: P8, P9 

• Which pins do what? 

• "Device tree overlays"

P8

P9





pwm

direction 1 SparkFun Motor Driver 
(Dual TB6612FNG) 
($35 on sparkfun)

Hobby Motor 
(M260)

6V lead-acid  
battery

Beaglebone 
Black

direction 2

standby

GND (P8_2)3.3V (P9_3)

+
-

Wiring for motor



Pulse-width modulation 
to drive motor

motor direction 
(cw, ccw)

motor speed 
(PWM)

10%

50%

800us

3.3V

3.3V



ethernetpwr

pendulum 
encoder

arm pot.

to motor 
motor pwr

Beaglebone controller
5V-to-3.3V!





read

write
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arm & pend angle

motor voltage

arm ang 
pend ang

Pendulum 
system

motor 
voltage

BBB



Linear Systems



A discrete-time linear time-invariant 
dynamical system is a set of matrix 

equations of the form

Control Theory: Observing {y}, pick {u} to make {x} “good”

xi+1 = Axi +Bui

yi = Cxi +Dui

i 2 N�0

state input

output

xi 2 Rn, yi 2 Rm, ui 2 Rr

Specifies a (vector) recursion 

Given x0 and {u}, we can calculate {x} and {y}

C =


1 0 0 0
0 0 1 0

�

x :=

2

664

p

p

0

✓

✓

0

3

775

arm ang 
arm vel 

pend ang 
pend vel

only read arm ang  
and pend ang

u
motor  

voltage



=
Let x :=

2

664

p

p

0

✓

✓

0

3

775

[1 0 1 -1]ui := Kxi

i C =


1 0 0 0
0 0 1 0

�

x :=

2

664

p

p

0

✓

✓

0

3

775

arm ang 
arm vel 

pend ang 
pend vel

only read arm ang  
and pend ang

SystemController

output = state

input

state-feedback!
controller

xi+1 = Axi +Bui

yi = Cxi +Dui
ui := Kxi

yi = xi

ui
xi+1 = Axi +Bui

yi = xi

State-feedback controllers are easy 
to design, analyze, and implement

Will this K stabilize the system?

Controller

u: motor 
voltage



State-feedback controllers are easy 
to design, analyze, and implement

Suppose D=0 and C is identity, so we measure x directly.
By choosing input

we have
xi+1 = (A+BK)xi , xi = (A+BK)ix0

xi+1 = Axi +Bui

yi = Cxi +Dui

ui := Kxi

=
Let x :=

2

664

p

p

0

✓

✓

0

3

775

[1 0 1 -1]ui := Kxi

i

Pick K for which (A+BK)i -> 0



C =


1 0 0 0
0 0 1 0

�

x :=

2

664

p

p

0

✓

✓

0

3

775

arm ang 
arm vel 

pend ang 
pend vel

only read arm ang  
and pend ang

SystemController

output = state

input

state-feedback!
controller

xi+1 = Axi +Bui

yi = Cxi +Dui
ui := Kxi

yi = xi

ui

State-feedback controllers are easy 
to design, analyze, and implement

How to express the pendulum system like this?





Intro
Method
Results

Conclusion

Motivation
System
Control Objective

Free body diagram

Equations of motion

m
c

p̈ = F � N

I ✓̈ = Plsin(✓)� Nlcos(✓)

F =
K

m

K
g

Rr
V �

K 2
m

K 2
g

Rr2 ṗ

N = m
p

(p̈ + lcos(✓)✓̈ � lsin(✓)✓̇2)

P = m
p

g + m
p

l(�sin(✓)✓̈ � cos(✓)✓̇2)

Thomas Hillesoey, Simon Haukanes, Daniel Kalland ECE 147C Final Project: Inverted Pendulum



Core idea
Intro
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Results

Conclusion

Motivation
System
Control Objective

Equations of Motion

p̈(M � mp lcos

2(✓)
L

) = KmKg
Rr

V � K

2
mK

2
g

Rr

2 ṗ � mp lg

L

cos(✓)sin(✓) + m
p

lsin(✓)✓̇2

✓̈(L� mp lcos

2(✓)
M

) = gsin(✓)� mp l ✓̇2

M

cos(✓)sin(✓)� cos(✓)
M

(KmKg
Rr

V � K

2
mK

2
g

Rr

2 ṗ)

We can linearize the equations around the equilibrium points for the
system. ✓ = ⇡ corresponds to the uninverted pendulum, and ✓ = 0
corresponds to the inverted.

Thomas Hillesoey, Simon Haukanes, Daniel Kalland ECE 147C Final Project: Inverted Pendulum

Express

as a discrete-time linear time-invariant system

xi+1 = Axi +Bui

yi = Cxi +Dui

ui := Kxi

then find matrix K satisfying

so that the control law
(A+BK)i ! 0

causes xi ! 0

Let x :=

2

664

p

p

0

✓

✓

0

3

775

u := V
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p̈(M � mp lcos
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2
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p

lsin(✓)✓̇2

✓̈(L� mp lcos

2(✓)
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We can linearize the equations around the equilibrium points for the
system. ✓ = ⇡ corresponds to the uninverted pendulum, and ✓ = 0
corresponds to the inverted.

Thomas Hillesoey, Simon Haukanes, Daniel Kalland ECE 147C Final Project: Inverted Pendulum

Constants: M,mp, L, l,Km,Kg, Rr, g

Functions of time: p(t), ✓(t), V (t)

p00(1� cos(✓)2) = V � p0 � cos(✓) sin(✓) + sin(✓)✓02

Simplify

✓00(1� ·) = ·



p00(1� cos(✓)2) = V � p0 � cos(✓) sin(✓) + sin(✓)✓02

Let x :=

2

664

p

p

0

✓

✓

0

3

775

2nd-order to 1st-order vector eqn

✓00(1� ·) = ·

u := V

, so x

0
:=

2

664

p

0

p

00

✓

0

✓

00

3

775 =
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=
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0 = f(x) +
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0
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0
·
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f(x)



f(x) :=

2

664

x

2

�x2�cos(x3) sin(x3)+sin(x1)x
2
4

(1�cos(x3)
2
)

x

3

·

3

775

Linearize
x

0 = f(x) +

2

664

0
u

0
·

3

775

p :=

2

664

0
0
0
0

3

775



x

0 = f(x) +

2

664

0
u

0
0

3

775 ⇡ Ax+Bu

B :=

2

664

0
1
0
0

3

775

Linearize x

0 = f(x) +

2

664

0
u

0
·

3

775 p :=

2

664

0
0
0
0

3

775

0 0

A :=

about
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We can linearize the equations around the equilibrium points for the
system. ✓ = ⇡ corresponds to the uninverted pendulum, and ✓ = 0
corresponds to the inverted.

Thomas Hillesoey, Simon Haukanes, Daniel Kalland ECE 147C Final Project: Inverted Pendulum

Express

as a discrete-time linear time-invariant system
xi+1 = Axi +Bui

yi = Cxi +Dui

ui := Kxi

then find matrix K satisfying

so that the control law
(A+BK)i ! 0

causes xi ! 0

Let x :=

2

664

p

p

0

✓

✓

0

3

775 u := V
A :=

B :=

2

664

0
0
1
0

3

775





SystemController

output = state

input

state-feedback!
controller

xi+1 = Axi +Bui

yi = Cxi +Dui
ui := Kxi

yi = xi

ui
xi+1 = Axi +Bui

yi = xi

State-feedback controllers are easy 
to design, analyze, and implement

How to express the pendulum system like this?



Recap: state-feedback 
conrol

• Equations of motion 

• Convert to vector 1st-order 

• Linearize system 

• Compute state-feedback gain K

Not pictured: 
- cts-to-discrete 
- state estimation

YouTube user "funskits"
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Matlab

Universal Power Module I/O card

QUARC 
blocks

DAQ board

Pendulum hardware Simulink

Motor Driver 
($35)

Beaglebone 
Black ($100)

$1-2k?

Profit?
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Andrew Symington Caio Motta
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