
Performance-tuning a scalable Ruby-on-Rails web app
Course project

CS291: Scalable Internet Services

Michael Zhang, Sammy Guo, Sujaya Maiyya, Kyle Carson, Justin Pearson

December 8, 2017

Abstract

For our course project for CS291: Scalable Internet Services at the University of California,
Santa Barbara, we created a car-sharing app in Ruby on Rails, deployed it to Amazon AWS
Elastic Beanstalk, and used Tsung to load-test it. We used various methods from the course to
tune the site’s performance, achieving a continuous simultaneous user flow of 128 users/second
at a cost of $3.46/hour.

1 Introduction
“Internet services” are a broad class of services in which a customer’s computer or mobile device
interacts with server computers owned by the company providing the service. This definition
encompasses essentially every company that conducts business over the Internet. The success of
an Internet service crucially depends on its ability to scale up to serve an increasing number of
clients and requests per second; high latency and unavailability are not acceptable. Scaling up an
Internet service amounts to increasing server capacity intelligently, e.g., by weighing the costs of:

• implementing the service in a fast language like C++ or PHP,

• buying more powerful servers (“vertical” scaling),

• distributing the service across multiple servers (“horizontal” scaling),

• separating the service between an HTTP server and an App server,

• placing servers in key geographic locations,

• distributing the database (“sharding”),

• using an easily-distributed data model (e.g., distributed key-value store),

• caching at various levels,

• using and tweaking HTTP 2,

• and other optimizations.

Each approach must be balanced against the cost of the engineer-time required to implement it. For
this reason, it’s best to keep things as simple and cheap as possible for the current and near-term
customer load. However, it’s important to know the maximum capacity of a given configuration;
this is the purpose of load testing, which simulates many simultaneous clients in order to discover
performance bottlenecks before they occur in production.

This report describes the load-testing of a scalable web app we built for the course CS 291:
Scalable Internet Services at the University of California at Santa Barbara. CS291 presented
architectures for scalable systems and techniques for solving scalability problems. We exercised
these techniques by building a car-sharing web app in Ruby-on-Rails, deploying it to the Internet
via AWS Elastic Beanstalk, and load-testing it with Tsung.

We proceed as follows. In Section 2 we describe our app. Section 3 describes our load-testing
investigation. We conclude in Section 4.

1

2 The Luber web app
In this section we describe our car-sharing web app, “Luber” (www.luber.fun). We built Luber
with Ruby on Rails and hosted it on the Internet via AWS Elastic Beanstalk. Luber allows people
to rent out their cars that would otherwise be sitting idle. Instead of Alice’s car sitting in her
driveway or her employer’s parking lot all day, she can make a little money by allowing Bob to
rent it for an hour.

2.1 Site overview
The site uses the Bootstrap layout library; here is the home page:

Guests (non-signed-in clients) can only access static pages like “About”, “FAQ”, etc:

Signed-in users can browse the cars available to rent:

2

Users can see an overview of their account:

A user can monitor the progress of the rentals they are involved in:

3

A user can view the details of a specific rental that they are either the owner or renter of:

We used the geocoding gem to convert a rental’s “Start” and “End” location strings into
coordinates, and used the Google Maps API to display the maps. However, we were careful to
disable these features when load-testing, in order to focus on our own app’s performance.

2.2 Data Model
There are six main models in our app. Users can own Cars and create Rentals for those cars.
A Car has many Tags describing its amenities: “sun-roof”, “stereo”, “off-road”, etc. A join model
called Taggings holds (car,tag) pairs that store each car’s tags. A user can view his or her recent
activity through Log entries.

A Rental has a state to track its progress: “Available”, “Upcoming”, “In Progress”, etc. Figure 1
illustrates a Rental’s progression through its states:

4

Figure 1: A Rental’s lifetime.

Rails applications use the model-view-controller design pattern. The entity relation diagram
for Luber’s data model appears in Figure 2. A few aspects of the data model are worth men-
tioning. The geocoder gem automatically converts start_location and end_location var-
chars into their corresponding latitude and longitude floating-point values. The bcrypt gem and
Rails has_secure_password method are used to store password digests for security, as advised in
railstutorial.org. Rails validations are used to verify the length and format of nearly every
field, even ensuring a Rental’s license plate adheres to DMV regulations.

5

railstutorial.org

Figure 2: The complete ER diagram of data model.

6

Luber’s controllers relation diagram is depicted in Figure 3. The Rails routes file was configured
so that URLs are user-friendly, e.g., luber.fun/users/bob/cars.

Figure 3: The complete ER diagram of controllers

3 Load testing
In this section we describe how we load-tested the Luber app with Tsung. We first describe the
“typical user workflow” that Tsung simulated. Then we describe how our app performed under
several different hardware configurations. We also explored optimizing the site using pagination,
caching, and increasing the maximum number of concurrent connections on the Nginx HTTP
server.

3.1 Workflow for a “Typical User”
We created a Tsung XML file to simulate a “typical user” on the Luber site, executing these actions
(see Figure 4):

1. User login

7

2. Add a car

3. Add a rental

4. Edit the rental

5. Delete the rental

6. Delete the car

7. User logout

Figure 4: Sequence diagram for user workflow

For simplicity, we encoded this behavior as a single Tsung session, instead of separating each
action into its own session and assigning a probability to it. It would have been better to have one
Tsung session dedicated to creating rentals and have another session dedicated to renting them
at an equal rate. However, it turned out to be difficult to deal with the concurrency problems
that arise when two Tsung sessions attempt to rent the same Rental simultaneously. Therefore it
seemed best to simulate a large set of idempotent sessions, each defining a user who acts in an
isolated fashion. One minor snag with this scheme was that a user cannot rent his own Rental,
so we chose instead for the user to simply edit his own Rental, which we supposed would impose
a load on the database similar to a user renting a Rental; editing and Renting each result in a
PATCH request, so this seemed like a good assumption.

The Tsung XML file defined 9 phases, differing only in the number of sessions (users) spawned
per second. It started with 1 session spawned per second, and doubled that rate in each successive
phase. Each phase lasted 60 seconds. We configured the phases to wait until the previous phase
finished; this delineated the data nicely. Under this scheme, the number of “simultaneous users
on the site” as a function of time should appear as successively larger humps. Indeed, such a plot
appears in Figure 5.

8

Figure 5: Number of simultaneous users spawned by our Tsung XML file as a function of time
(sec). Note that in this figure, the first phase — spawning 1 user/sec — lasts only 30 sec; the
others are 60 sec long.

3.2 Varying instance number and type on Elastic Beanstalk
To explore Luber’s performance, we ran our Tsung load-test against the Luber app running on
several different hardware configurations in AWS Elastic Beanstalk. Specifically, we varied the
number of instances (App servers), the instance types (m3.medium, etc), and the instance type
of the database server. Table 1 shows the various configurations. Before each test, we deleted all
database records and re-seeded it with 11000 users, 2000 cars, 10000 rentals, 20 tags, and 4000
taggings. We ran the same Tsung XML file for each configuration.

Instance type Num. instances DB instance type
m3.medium 1 m3.medium
m3.medium 1 m4.2xlarge
m3.medium 4 m3.medium
m3.medium 4 m4.2xlarge
c5.2xlarge 4 m4.2xlarge
c3.4xlarge 1 r3.2xlarge
c3.4xlarge 2 r3.2xlarge
c3.4xlarge 4 r3.2xlarge

Table 1: Hardware configurations we load-tested against.

3.2.1 Results

We divided the various steps within our single Tsung session into transactions, allowing us to assess
how long it takes a user to sign in, rent a car, delete it, etc. A one-second thinktime was added to
each of these transactions to simulate human users. Figure 6 shows a healthy run, in which each
transaction takes 1000 to 1200 ms, which amounts to 0–200ms transaction time after subtracting
the 1-second thinktime. The transaction time stays constant during this run, indicating that some
degree of steady-state was achieved. On the other hand, an unhealthy run (256 users/sec), appears
in Figure 7. Here, the transaction times skyrocket unpredictably to between 2 and 8 seconds.

9

Figure 6: Normal response time for transactions is 1000–1200 ms (1 second of which is the think-
time).

Figure 7: Transaction response time in a heavily-loaded system.

10

Figure 8 compares (1) the number of users that can be supported by a given hardware config-
uration versus (2) the cost of the hardware configuration. We consider the maximum number of
users for a hardware configuration to be simply the largest user-spawn rate that does not produce
400- or 500-level HTTP responses or Nginx web server errors. It would have been better to define
more Tsung phases with various user-spawn rates — not just powers of 2 — because it would have
provided better x-axis resolution. Nevertheless, Figure 8 allows us to easily compute the cost of
supporting a given number of users per second. For example, if usage data reveals that at peak
times there are 128 users on the site, then we should change the Elastic Beanstalk configuration
to run four c3.4xlarge instances and a r3.2xlarge database, which would cost $3.36 per hour. Each
user during that time would be costing $0.0004375 per user.1

Figure 8: Hardware cost versus user capacity for several AWS hardware configurations.

3.3 Pagination
When there are large numbers of rental posts (i.e. > 1000) our application will try to query, render,
and display all 1000 rental posts in our rental post view. Thus one of the first optimizations we
applied was to paginate the view so that the application will not constantly overload the database
and the Ruby process.

As shown in Figure 9 the performance of our application with no pagination was abysmally
slow; we could only add a user every 20 seconds across a long period of time to avoid crashing
(i.e. HTTP 500 errors) Rails. Many requests took between 15 to 20 seconds to query, render, and
display while our beanstalk instance spiked to over 60 percent CPU usage. We had to configure
Tsung to add a new user every 20 seconds for 3 minutes.

Figure 9 shows the reduced application response time thanks to pagination. Our rental post
view now shows only 8 posts per page instead of the entire 1000 in our database. Thus the
application’s response time stays below 10 seconds.

While 10 seconds may not be the best response time for a practical application, we are pushing
the limits of our given elastic beanstalk infrastructure (m3 medium instances for app and db
server). Our Tsung configurations for user arrival rates are derived through trial-and-error; we

1Since not every user is using the site at once, the total number of users may be many times the peak number
of users loading the site.

11

0 50 100 150 200 250

0

1

2

3

·104

Time [sec]

R
ep

on
se

T
im

e
[m

se
c]

Pagination

No Pagination
With Pagination

Figure 9: Pagination optimizations halved response times for rental listings. Paginated version
tested with 2 new users per second for 60 seconds.

kept increasing the user rate until the application throws HTTP 500 errors. The point at which
beanstalk stops throwing 500s are where we report this new performance capability.

In other words, our optimizations gave us better performance under higher stress.

3.4 Caching
After implementing pagination, we explored caching as another avenue for performance boosting.
We switched to a beefier c3 4xlarge instance since we anticipated caching to be most effective on
larger scale systems.

We applied Tsung tests to the same rental listing pages and established a new baseline for our
c3.4xlarge instance. Figure 11 shows a new average response time around 2 seconds with 2 new
users per second for 60 seconds.

We’d like to point out the performance difference of using a larger EC2 instance compared to
the m3.medium we used for the pagination tests. Turns out that a machine with over 10 times
more memory (3 GB vs 30 GB) and 16 times more processors (1 vs 16 cores) results in over 4
times application speedup (see Figure 10).

We postulate several reasons why our Russian-doll fragment caching didn’t work:

• The view rendering was not the performance bottleneck; since we did not observe a major
speedup in our results.

• For each page view of the rental listing, our application still had to query the database for
details on the rental posts. This is where we think the majority of our application runtime
was spent.

In retrospect we would have focused our efforts on caching database queries to reduce the
overall transaction load on our db instance. One idea we thought may work would be to analyze
the mean time between all requests that modify/create any rental post. We’ll use that value to set
the expiration time for an in-memory cache of as many rental posts as we can. The idea is to cache
the rental for the average period it will likely change. Thus, if there are large numbers of users
listing rentals, most of the requests will hit the memory cache instead of querying the database
assuming users are more likely to browse rentals than modify them at any given time. As long as
that’s the case, we suspect this proposed caching scheme will improve the overall performance of
the application.

12

0 50 100 150 200 250

0

2,000

4,000

6,000

8,000

Time [sec]

R
ep

on
se

T
im

e
[m

se
c]

Performance of EC2 Machine Types

m3.medium
c3.4xlarge

Figure 10: Simply switching our EC2 instance to a more powerful type gave us over 4 times
speedup.

0 50 100 150 200 250
0

500

1,000

1,500

2,000

Time [sec]

R
ep

on
se

T
im

e
[m

se
c]

Caching

No Caching
With Caching

Figure 11: While we did observe minor speedups after implementing Russian-doll fragment
caching, we’ve decided that the performance bottleneck may lie in the database transaction speeds.

13

3.5 Number of concurrent connections
Each of the elastic beanstalk instances runs Nginx web server. Web server limitations can be one
of the biggest bottlenecks while trying to scale an application. During load testing, one of the
bottlenecks we found was the number of concurrent connections allowed by Nginx. The default
values in nginx.conf for all elastic bean instances was 1024. This implies that at any point if the
number of connected users increase more than 1024, there are high chances that the server will
start throwing 5xx errors for the http connections. This may not be a deterministic behavior as
web servers may allow more connections, depending on the resources available.

In order to load test our application with respect to number of concurrent users it can handle,
we used Tsung. The test case had 2 sessions with an arrival rate of 128 users/second for one
minute:

• Session 1: A user logs in, rents a car, waits for a few seconds, returns the rented car, signs
out. 70% of Tsung tests go through this session.

• Session 2: A user logs in, adds a car, creates a rental from it, waits for a few seconds, removes
the rental, removes the car, signs out. 30% of the Tsung test go through this session.

In the figure 12, at time 50th second, we can see that the number of simultaneous users are
highest (with a value of 1616). Figure 13 plots the number of different HTTP responses sent by
the server over time. In 13, we see that at the 50th second, the server starts throwing different
errors, the point at which the number of concurrent connections was maximum. And the kind of
error we faced was error_connection_closed as seen in 14.

Figure 12: Number of simultaneous users

Figure 13: HTTP responses

14

Figure 14: Errors

In contrast to the above plots, consider the figures 15 and 16. In this situation, the maximum
number of users is 519, at 40th second. This number is significantly lower than the previous case
and we also notice that there are no HTTP errors in this case.

Figure 15: Number of simultaneous users

Figure 16: HTTP responses

From the above plots it was evident that the web server starts misbehaving when the num-
ber of concurrent connections increase more than 1024, which is the default limit of Elastic
Beanstalk instances. The Nginx configurations are stored in /etc/nginx/nginx.conf. The field
worker_connections holds the number of allowed concurrent connections. We tried different ap-
proaches to increase the limit by adding a proxy config file and by manually ssh-ing into the eb
instance and updating the nginx.conf file. But none of it seemed to actually update the configu-
ration. Some of the other optimizations we tried was to update the Network Tier configurations.
If load balancing is enabled, which is the case in our application, the default setting is to drain
the connections after 20 seconds. We disabled the connection draining, as most of the errors faced

15

during Tsung test was error_connection_closed. We also enabled Sessions stickiness and in-
creased the Health check interval to 30 seconds, as each health check request establishes a TCP
connection, adding to the number of concurrent connections. This reduced the average time taken
for by each session from 6.8 seconds to 4.79 seconds (the session time also includes thinktime used
for simulating actual user behavior). This reduction in session time in turn reduced the number
of concurrent connections and thus our application could support an arrival rate of 128 users per
second without any errors.

4 Conclusion
This paper described a scalable web app — Luber — and how its performance was measured and
improved using the Tsung load tester, Amazon AWS Elastic Beanstalk, and concepts from the
UCSB Computer Science course CS291: Scalable Internet Services.

In this paper, we introduced the Luber website and described its data model and controllers. We
defined the workflow of a “typical user” and implemented it in Tsung load-tests. We ran these load
tests against a variety of AWS hardware configurations — both vertical and horizontal scaling — to
get a sense of the tradeoff between peak use and cost. Then, we explored additional optimizations
— pagination, caching, and boosting the max number of concurrent Nginx connections — and
measured their effect on performance.

We are confident that our Tsung tests represent a typical user workflow, and that Luber can
handle a decent amount of traffic based on our load testing results.

16

	Introduction
	The Luber web app
	Site overview
	Data Model

	Load testing
	Workflow for a ``Typical User''
	Varying instance number and type on Elastic Beanstalk
	Results

	Pagination
	Caching
	Number of concurrent connections

	Conclusion

